Journal of Porous Materials

, Volume 20, Issue 6, pp 1433–1440 | Cite as

Mesoporous titania/tungstophosphoric acid composites: suitable synthesis of flavones

  • Maria E. Pérez
  • Diego M. Ruiz
  • Juan C. Autino
  • Mirta N. Blanco
  • Luis R. Pizzio
  • Gustavo P. Romanelli


Mesoporous TiO2/H3PW12O40 composites were synthesized by sol–gel reactions using urea as a low-cost template, and adding tungstophosphoric acid (TPA) at the same time as the template. The TPA concentration was varied in order to obtain TPA contents of 0, 10, and 20 (w/w) in the solid. The samples presented mesopores with a diameter higher than 3.0 nm. The specific surface area of the solids decreased with both the increase of the TPA content and the calcination temperature. From Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance studies it was observed that the main heteropolyoxometallate species present in the composites is the [PW12O40]3− anion, which was partially transformed into the [P2W21O71]6− and [PW11O39]7− anions during the synthesis and drying step. The X-ray diffraction patterns of the modified samples only exhibited the characteristic peaks of the anatase phase of titanium oxide. The point of zero charge decreased with both the increase of TPA content in the solids and the calcination temperature. The materials were found to be efficient and recyclable catalysts for the synthesis of a series of flavones. The reaction was carried out in different reaction media: heterogeneous and solvent-free conditions. The solvent-free conditions represent the best green conditions. Initially, we optimize the reaction condition to obtain 6-chloroflavone by direct reaction of the cyclodehydration of 1-(2-hydroxy-5-chlorophenyl)-3-phenyl-1,3-propanodione in the presence of a catalytic amount of mesoporous titania modified with tungstophosphoric acid catalyst. Reactions were performed in two conditions: low volume of toluene, at 110 °C, typically 24 h, and solvent-free at the same temperature, 1 h. In all cases the product (6-chloroflavone) was obtained with high selectivity. Conversions up to 76 and 92 % were obtained respectively, using the supported catalyst (TiTPA10). Optimal reaction conditions were applied to the preparation of six substituted flavones in both conditions.


Mesoporous titania modified with tungstophosphoric Keggin heteropolyacids Flavone synthesis Solvent-free organic reaction 



We thank Universidad Nacional de La Plata, CONICET and ANPCyT for financial support. LRP, MNB and GPR are members of CONICET.


  1. 1.
    L. Osiglio, A. Sathicq, G. Romanelli, M. Blanco, J. Mol. Catal. A Chem. 359, 97–103 (2012)CrossRefGoogle Scholar
  2. 2.
    K. Niknam, D. Saberi, M. Mohagheghnejad, Molecules 14, 1915–1926 (2009)CrossRefGoogle Scholar
  3. 3.
    P. Villabrille, G. Romanelli, N. Quaranta, P. Vázquez, Appl. Catal. B Environ. 96, 379–386 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Romanelli, P. Vázquez, L. Pizzio, C. Cáceres, M. Blanco, J. Autino, Synth. Commun. 33, 1359–1365 (2003)CrossRefGoogle Scholar
  5. 5.
    T. Rivera, A. Sosa, G. Romanelli, M. Blanco, L. Pizzio, Appl. Catal. A Chem. 443–444, 207–213 (2012)CrossRefGoogle Scholar
  6. 6.
    Ruiz D, Autino J, Quaranta N, Vázquez P, Romanelli G (2012) Sci. World J. art. 174784Google Scholar
  7. 7.
    V.M. Fuchs, E.L. Soto, M.N. Blanco, L.R. Pizzio, J. Colloid Interf. 327, 403–411 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Martens, A. Mithöfer, Phythochemistry 66, 2399–2407 (2005)CrossRefGoogle Scholar
  9. 9.
    Kabalka G, Mereddy A (2005) Tetrahedron Lett. 46:6315–6317 (references cited therein)Google Scholar
  10. 10.
    J. Grassmann, S. Hippeli, E. Eltsner, Plant Physiol. Biochem. 40, 471–478 (2002)CrossRefGoogle Scholar
  11. 11.
    J. Wu, X. Wang, Y. Yic, K. Leeb, Bioorg. Med. Chem. Lett. 13, 1813–1815 (2003)CrossRefGoogle Scholar
  12. 12.
    Seijas J, Vázquez-Tato M, Carballido-Reboredo R (2005) J. Org. Chem. 70:2855–2858 (references cited therein)Google Scholar
  13. 13.
    S. Yano, H. Tachibana, K. Yamada, J. Agric. Food Chem. 53, 1812–1917 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Morimoto, K. Tanimoto, S. Nakano, T. Ozaki, A. Nakano, K. Komai, J. Agric. Food Chem. 51, 389–393 (2003)CrossRefGoogle Scholar
  15. 15.
    W. Ohmura, S. Doi, M. Aoyama, S. Ohara, J. Wood Sci. 46, 149–153 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Sosa, C. Tonn, C. Phytochem. Rev. 7, 3–24 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Morimoto, S. Kumeda, K. Komai, J. Agric. Food Chem. 48, 1888–1891 (2000)CrossRefGoogle Scholar
  18. 18.
    D. Luthria, V. Ramakrishnan, A. Banerji, J. Nat. Prod. 56, 671–675 (1993)CrossRefGoogle Scholar
  19. 19.
    M. Morimoto, H. Fukumoto, T. Nozoe, A. Hagiwara, K. Komai, J. Agric. Food Chem. 55, 700–705 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Ballesta-Acosta, M. Pascual-Villalobos, B. Rodríguez, B. J. Agric. Res. 6, 85–91 (2008)Google Scholar
  21. 21.
    P. Zhao, J. Li, G. Yang, Biorg. Med. Chem. 15, 1888–1895 (2007)CrossRefGoogle Scholar
  22. 22.
    E. Virla, M. Colomo, D. Berta, L. Valverde, Neotrópica 45, 3–12 (1999)Google Scholar
  23. 23.
    E. Virla, A. Alvarez, A.F. Loto, L. Pera, L.M. Baigori, Fla. Entomol. 91, 63–69 (2008)CrossRefGoogle Scholar
  24. 24.
    T. Wheeler, Org. Synth. 32, 72 (1952)Google Scholar
  25. 25.
    Y. Hoshino, N. Takeno, Bull. Chem. Soc. Jpn. 60, 1919–1920 (1987)CrossRefGoogle Scholar
  26. 26.
    S. Sarda, M. Pathan, V. Paike, P. Pachmase, W. Jadhav, R. Pawar, Arkivoc 16, 43–48 (2006)CrossRefGoogle Scholar
  27. 27.
    D. Bennardi, G. Romanelli, J. Jios, J. Autino, G. Baronetti, H. Thomas, Arkivoc xi, 123–130 (2008)CrossRefGoogle Scholar
  28. 28.
    D. Bennardi, D. Ruiz, G.P. Romanelli, G. Baronetti, H. Thomas, J. Autino, Lett. Org. Chem. 5(8), 607–615 (2008)CrossRefGoogle Scholar
  29. 29.
    G. Romanelli, E. Virla, P. Duchowicz, A. Gaddi, D. Ruiz, D. Bennardi, D. Dell Valle Ortiz, J. Autino, J. Agric. Chem. Food 8(10), 6290–6295 (2010)CrossRefGoogle Scholar
  30. 30.
    D.O. Bennardi, G.P. Romanelli, J.C. Autino, L.R. Pizzio, Catal. Commun. 10(5), 576–581 (2009)CrossRefGoogle Scholar
  31. 31.
    G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41, 207 (1998)CrossRefGoogle Scholar
  32. 32.
    M.T. Pope, Heteropoly and isopoly oxometalates (Springer, Heidelberg, 1983), p. 180CrossRefGoogle Scholar
  33. 33.
    S. Bakardjieva, J. Šubrt, V. Štengl, V. Balek, M.J. Dianez, M.J. Sayagues, Appl. Catal. B Environ. 58, 193–200 (2005)CrossRefGoogle Scholar
  34. 34.
    R. Cid, G. Pecci, Appl. Catal. A Gen. 14, 15–21 (1985)CrossRefGoogle Scholar
  35. 35.
    V.M. Fuchs, L.R. Pizzio, M.N. Blanco, Eur. Polym. J. 44, 801–807 (2008)CrossRefGoogle Scholar
  36. 36.
    L.R. Pizzio, M.N. Blanco, Appl. Catal. A Gen. 255, 265–277 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria E. Pérez
    • 1
  • Diego M. Ruiz
    • 1
  • Juan C. Autino
    • 1
  • Mirta N. Blanco
    • 2
  • Luis R. Pizzio
    • 2
  • Gustavo P. Romanelli
    • 1
    • 2
  1. 1.Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA-CCT-CONICET)Universidad Nacional de La PlataLa PlataArgentina

Personalised recommendations