Journal of Porous Materials

, Volume 20, Issue 6, pp 1407–1421 | Cite as

Synthesis and characterization of silicalite-1 membrane prepared on a novel support by the pore plugging method

  • M. Tawalbeh
  • F. H. Tezel
  • B. Kruczek
  • S. Letaief
  • C. Detellier


The effect of the support pore size on the membrane morphology was investigated for zeolite silicalite-1 membranes synthesized by pore plugging method on supports with zirconium oxide and/or titanium oxide active layer. Parameters including surface coverage, zeolite layer thickness, crystal size and shape, zeolite penetration depth were used to quantify the membrane morphology. Five supports with different pore sizes for their active layer in the range of 0.14–1.4 μm were investigated. The X-ray diffraction (XRD) analysis showed a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores as well as on top of all supports. The XRD results also showed that the silicalite-1 crystals in the synthesized membranes are not randomly oriented. The crystallographic preferred orientation (CPO) analysis revealed that the degree of orientation toward either the a-axis or b-axis perpendicular to the support surface, increased by decreasing the pore size of the support. The 0.45 μm support had the most preferably oriented zeolite layer for access of molecules entering into the membrane structure with the highest number of crystals oriented with the b-axis (the one with straight channels) perpendicular to the support surface. The scanning electron micrographs (SEM) analysis of the membranes revealed a dense and continuous surface morphology with the highest crystal size of silicalite-1 around 1.5 μm on the surface of the support with the 0.45 μm pore size. SEM micrographs also showed a continuous layer grown over four supports out of five supports with different pore sizes that were investigated, with no layer observed on the 1.4 μm pore size support. The average thickness of the zeolite layer was in the range of 0.7–1.4 μm, depending on the pore size of the support. The supports with 0.2 and 0.45 μm pore sizes had the most uniform zeolite layer thickness while the support with 0.8 μm pore size active layer had the least uniform zeolite layer thickness. The electron diffraction spectrometer (EDS) analysis confirmed the formation of pure silicalite-1 layer at the surface as well as inside the pores of all supports. The highest silicalite-1 crystal penetration was for the supports with 0.45 and 1.4 μm pore sizes. Single gas permeation experiments with He and N2 gases at 293 K illustrated that regardless of the pore size of the support, the He and N2 permeances were constant despite the change of the pressure across the membranes. The highest permeances were observed for the membrane prepared using the 0.45 μm pore size support, while the lowest permeances were for the membrane prepared using the 1.4 μm pore size support. These results confirmed the selective properties of the prepared membranes. No matter what is the pore size of the support or the feed pressure, N2 permeances were around three times higher than those for He.


Inorganic membranes Silicalite-1 Pore size effect Pore plugging Adsorbent membranes 





Barrett–Joyner–Halenda data interpretation method


Cross polarization


Crystallographic preferred orientation


Differential scanning calorimeter


Differential thermal gravimetric analysis


Electron diffraction spectrometer


International Zeolite Association


Magic angle spinning


Nuclear magnetic resonance


Scanning electron microscope


Tetrapropylammonium hydroxide


Thermal gravimetric analysis


X-ray diffraction



The authors acknowledge the financial support received from Natural Science and Engineering Research Council (NSERC) of Canada and from the University of Ottawa. The Canada Foundation for Innovation and the Ontario Research Fund are gratefully acknowledged for infrastructure grants obtained by the Center for Catalysis Research and Innovation.


  1. 1.
    A. Tavolaro, E. Drioli, Zeolite membranes. Adv. Mater. 11, 975–996 (1999)CrossRefGoogle Scholar
  2. 2.
    M. Kazemimoghadam, T. Mohammadi, Synthesis of MFI zeolite membranes for water desalination. Desalination 206, 547–553 (2007)CrossRefGoogle Scholar
  3. 3.
    W. Yuan, Y.S. Lin, W. Yang, Molecular sieving MFI-type zeolite membranes for pervaporation separation. J. Am. Chem. Soc. 126, 4776–4777 (2004)CrossRefGoogle Scholar
  4. 4.
    F. Jareman, C. Andersson, J. Hedlund, The influence of the calcination rate on silicalite-1 membranes. Microporous Mesoporous Mater. 79, 1–5 (2005)CrossRefGoogle Scholar
  5. 5.
    H.H. Funke, M.G. Kovalchick, J.L. Falconer, R.D. Noble, Separation of hydrocarbon isomer vapors with silicalite zeolite membranes. Ind. Eng. Chem. Res. 35, 1575 (1996)CrossRefGoogle Scholar
  6. 6.
    A. Javaid, Membranes for solubility-based gas separation applications. J. Chem. Eng. 112, 219–226 (2005)CrossRefGoogle Scholar
  7. 7.
    B.M. Lok, T.R. Cannan, C.A. Messina, The role of organic molecules in molecular sieve synthesis. Zeolites 3, 282–291 (1983)CrossRefGoogle Scholar
  8. 8.
    S.P. Davis, E.V.R. Borgstedt, S.L. Suib, Growth of zeolite crystallites and coatings on metal surfaces. Chem. Mater. 2, 712–719 (1990)CrossRefGoogle Scholar
  9. 9.
    T. Matsufuji, N. Nishiyama, M. Matsukata, K. Ueyama, Separation of butane and xylene isomers with MFI-type zeolite membranes synthesized by a vapour-phase transport method. J. Membr. Sci. 178, 25–34 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Gouzinis, M. Tsapatsis, On the preferred orientation and microstructural manipulation of molecular sieve films prepared by secondary growth. Chem. Mater. 10, 2497–2504 (1998)CrossRefGoogle Scholar
  11. 11.
    S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O. Pachtova Prokopova, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis: preparation and morphological characterization. J. Membr. Sci. 281, 228–238 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Miachon, P. Ciavarella, L. van Dyk, I. Kumakiri, K. Fiaty, Y. Schuurman, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis: specific transport and separation properties. J. Membr. Sci. 298, 71–79 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Kong, J. Lu, J. Yang, J. Wang, Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis. J. Membr. Sci. 285, 258–264 (2006)CrossRefGoogle Scholar
  14. 14.
    E. Bourgeat-Lami, P. Massiani, F.D. Renzo, P. Espiau, F. Fajula, Th.D. Courieres, Study of the state of aluminium in zeolite-β. Appl. Catal. 72, 139–152 (1991)CrossRefGoogle Scholar
  15. 15.
    N.Y. Chen, Hydrophobic properties of zeolites. J. Phys. Chem. 80, 60–64 (1978)CrossRefGoogle Scholar
  16. 16.
    J. Caro, M. Noack, Zeolite membranes—recent development and progress. Microporous Mesoporous Mater. 115, 215–233 (2008)Google Scholar
  17. 17.
    G.E. Romanos, Th.A. Steriotis, E.S. Kikkinides, N.K. Kanellopoulos, V. Kasselouri, J.D.F. Ramsay, P. Langlois, S. Kallus, Innovative methods for preparation and testing of Al2O3 supported silicalite-1 membranes. J. Eur. Ceram. Soc. 21, 119–126 (2001)CrossRefGoogle Scholar
  18. 18.
    E. Landrivon, S. Miachon, I. Kumakiri, M. Matsukata, J.-A. Dalmon, MFI-alumina composite membrane. Influence of the support porous structure on the separative performance. Fuel Chem. Div. Prepr. 48, 394–395 (2003)Google Scholar
  19. 19.
    M. Pan, Y.S. Lin, Template-free secondary growth synthesis of MFI type zeolite membranes. Microporous Mesoporous Mater. 43, 319–327 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Storck, H. Bretinger, W.F. Maier, Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A 174, 137–146 (1998)CrossRefGoogle Scholar
  21. 21.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  22. 22.
    M. Tawalbeh, B. Kruczek, F.H. Tezel, S. Letaief, C. Detellier, Separation of CO2 and N2 gases using a novel zeolite membrane. Sep. Sci. Tech. 47, 1606–1616 (2012)CrossRefGoogle Scholar
  23. 23.
    G. Defontaine, A. Barichard, S. Letaief, C. Feng, T. Matsuura, C. Detellier, Nanoporous polymer—clay hybrid membranes for gas separation. J. Coll. Interf. Sci. 343, 622–627 (2010)CrossRefGoogle Scholar
  24. 24.
    R. Ravishankar, C. Kirschhock, B.J. Schoeman, P. Vanoppen, P.J. Grobet, S. Storck, W.F. Maier, J.A. Martens, F.C. De Schryver, P.A. Jacobs, Physicochemical characterization of silicalite-1 nanophase material. J. Phys. Chem. B 102, 2633–2639 (1998)CrossRefGoogle Scholar
  25. 25.
    A. Manna, B.D. Kulkarni, R.K. Ahedi, A. Bhaumik, A.N. Kotasthane, Synthesis of silicalite-1 in bicontinuous microemulsion containing AOT. J. Coll. Interf. Sci. 213, 405–411 (1999)CrossRefGoogle Scholar
  26. 26.
    J.M. Chezeau, L. Delmotte, J.L. Guth, Z. Gabelica, Influence of synthesis conditions and post synthesis treatments on the nature and quantity of structural defects in highly siliceous MFI zeolites: a high-resolution solid-state 29Si n.m.r. study. Zeolites 11, 598–606 (1991)CrossRefGoogle Scholar
  27. 27.
    X. Lin, H. Kita, K. Okamoto, Silicalite membrane preparation, characterization, and separation performance. Ind. Eng. Chem. Res. 40, 4069–4078 (2001)CrossRefGoogle Scholar
  28. 28.
    J. Dong, J. Zou, Y. Long, Synthesis and characterization of colloidal TBA-silicalite-2. Microporous Mesoporous Mater. 57, 9–19 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Soulard, S. Bilger, H. Kessler, J.L. Guth, Thermoanalytical characterization of MFI-type zeolites prepared either in the presence of OH or of F ions. Zeolites 7, 463–470 (1987)CrossRefGoogle Scholar
  30. 30.
    L.M. Parker, D.M. Bibby, J.E. Patterson, Thermal decomposition of ZSM-5 and silicalite precursors. Zeolites 4, 168–174 (1984)CrossRefGoogle Scholar
  31. 31.
    M.R. Othman, S.C. Tan, S. Bhatia, Separability of carbon dioxide from methane using MFI zeolite–silica film deposited on gamma-alumina support. Microporous Mesoporous Mater. 121, 138–144 (2009)CrossRefGoogle Scholar
  32. 32.
    S.P. Naik, A.S.T. Chiang, R.W. Thompson, F.C. Huang, Formation of silicalite-1 hollow spheres by the self-assembly of nanocrystals. Chem. Mater. 15, 787–792 (2003)CrossRefGoogle Scholar
  33. 33.
    Y. Ma, J. Guan, S. Wu, J. Liu, Q. Kan, W. Zhang, Synthesis and characterization of belt-like silicalite-1 nanocrystals with mesoporous structure. Mater. Lett. 64, 2523–2525 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Caro, M. Noack, P. Kolsch, Zeolite membranes: from the laboratory scale to technical applications. Adsorption 11, 215–227 (2005)CrossRefGoogle Scholar
  35. 35.
    M.C. Lovallo, M. Tsapatsis, Preferentially oriented submicron silicalite membranes. AIChE J. 42, 3020–3029 (1996)CrossRefGoogle Scholar
  36. 36.
    J.P. Verduijn, A.J. Bons, M.H. Anthonis, L.H. Czarnetzki, Int. Patent Appl. PCT WO 96/01683Google Scholar
  37. 37.
    J. Hedlund, Control of the preferred orientation in MFI films synthesized by seeding. J. Porous Mater. 7, 455–464 (2000)CrossRefGoogle Scholar
  38. 38.
    J. Heldund, S. Mintova, J. Sterte, Controlling the preferred orientation in silicalite-1 films synthesized by seeding. Microporous Mesoporous Mater. 28, 185–194 (1999)CrossRefGoogle Scholar
  39. 39.
    M.A. Ulla, R. Mallada, J. Coronas, L. Gutierrez, E. Miro, J. Santamaria, Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. Appl. Catal. A 253, 257–269 (2003)CrossRefGoogle Scholar
  40. 40.
    L. Tosheva, B. Mihailova, V. Valtchev, J. Sterte, Silicalite-1 macrostructures—preparation and structural features. Microporous Mesoporous Mater. 39, 91–101 (2000)CrossRefGoogle Scholar
  41. 41.
    I. Diaz, E. Kokkoli, O. Terasaki, M. Tsapatsis, Surface structure of zeolite (MFI) crystals. Chem. Mater. 16, 5226–5232 (2004)CrossRefGoogle Scholar
  42. 42.
    A. Larbot, J.-P. Fabre, C. Guizard, L. Cot, J. Gillot, New inorganic ultrafiltration membranes: titania and zirconia membranes. J. Am. Ceram. Soc. 72, 257–261 (1989)CrossRefGoogle Scholar
  43. 43.
    R. Gopalan, C.-H. Chang, Y.S. Lin, Thermal stability improvement on pore and phase structure of sol-gel derived zirconia. J. Mater. Sci. 30, 3075–3081 (1995)CrossRefGoogle Scholar
  44. 44.
    M. Kanezashi, J. O’Brien, Y.S. Lin, Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer. Microporous Mesoporous Mater. 103, 302–308 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Motuzas, R. Mikutaviciute, E. Gerardin, A. Julbe, Controlled growth of thin and uniform TS-1 membranes by MW-assisted heating. Microporous Mesoporous Mater. 128, 136–143 (2010)CrossRefGoogle Scholar
  46. 46.
    Y. Takata, T. Tsuru, T. Yoshioka, M. Asaeda, Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene. Microporous Mesoporous Mater. 54, 257–268 (2002)CrossRefGoogle Scholar
  47. 47.
    F. Jareman, J. Hedlund, Permeation of H2, N2, He, and SF6 in real MFI membranes. Microporous Mesoporous Mater. 83, 326–332 (2005)CrossRefGoogle Scholar
  48. 48.
    K. Aoki, V.A. Tuan, J.L. Falconer, R.D. Noble, Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes. Microporous Mesoporous Mater. 39, 485–492 (2000)CrossRefGoogle Scholar
  49. 49.
    W.J.W. Bakker, L.J.P. Broeke, F. Kapteijn, J. Moulijn, Temperature dependence of one-component permeation through a silicalite-I membrane. AIChE J. 43, 2203–2214 (1997)CrossRefGoogle Scholar
  50. 50.
    Z. Lai, M. Tsapatsis, Gas and organic vapor permeation through b-oriented MFI membranes. Ind. Eng. Chem. Res. 43, 3000–3007 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Tawalbeh
    • 1
  • F. H. Tezel
    • 1
  • B. Kruczek
    • 1
  • S. Letaief
    • 2
  • C. Detellier
    • 2
  1. 1.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  2. 2.Department of Chemistry, Centre for Catalysis Research and InnovationUniversity of OttawaOttawaCanada

Personalised recommendations