Advertisement

Journal of Porous Materials

, Volume 20, Issue 4, pp 951–959 | Cite as

Transesterification of diethyl malonate with n-butanol over HPWA/MCM-41 molecular sieves

  • S. Ajaikumar
  • M. Backiaraj
  • J.-P. Mikkola
  • A. Pandurangan
Article

Abstract

Mesoporous Si-MCM-41 and Al-MCM-41 (Si/Al = 100) materials were synthesized via a hydrothermal method. Three different ratios (10, 20 and 30 wt%) of heteropoly tungstic acid (HPWA) was loaded on Si-MCM-41 by wet impregnation techniques. The characteristic structural features of the prepared materials were studied by various physico-chemical techniques such as X-ray diffraction (XRD), Nitrogen physisorption (BET), temperature programmed desorption of ammonia (TPD) and transmission electron microscopy (TEM). Transesterification of diethyl malonate (DEM) with n-butanol under autogeneous conditions in a temperature range from 50 to 125 °C was selected as the test reaction for the as synthesized materials. The reactants were fed with various mole ratios in order to determine the optimal feed composition leading to maximum yields of transesterified products. The results indicated that the conversion of diethylmalonate depends on the HPWA concentration on the support, temperature, reaction time and mole ratio of the reactants. Further, the catalytic efficiency of HPWA/MCM-41 was compared with that of Al-MCM-41. The solid acid HPWA/MCM-41 catalysts have several advantages in comparison to conventional mineral acid catalysts which are heterogeneous, eco-friendly, highly active and selective in the formation of transesters.

Keywords

HPWA/MCM-41 Transesterification Dietyl malonate n-Butanol 

Notes

Acknowledgments

The authors gratefully acknowledge Council of Scientific & Industrial Research (CSIR), New Delhi, India for the financial support. The Bio4Energy programme is acknowledged.

References

  1. 1.
    B. Freedman, E.H. Pryde, T.L. Mounts, J. Am. Oil Chem. Soc. 61, 1638 (1984)CrossRefGoogle Scholar
  2. 2.
    M.K. Lam, K.T. Lee, A.R. Mohamed, Biotechnol. Adv. 28, 500 (2010)CrossRefGoogle Scholar
  3. 3.
    D.M. Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, E. Santacesaria, Ind. Eng. Chem. Res. 45, 3009 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Canakci, V.J. Gerpen, Trans. ASAE 46, 945 (2003)Google Scholar
  5. 5.
    G. Vicente, A. Coteron, M. Martinez, J. Aracil, Ind. Crops Prod. 8, 29 (1998)CrossRefGoogle Scholar
  6. 6.
    G. Antolin, F.V. Tinaut, Y. Brice˜no, V. Casta ˜no, C. Perez, A.I. Ramirez, Bioresour. Technol. 83, 111 (2002)CrossRefGoogle Scholar
  7. 7.
    S. Zheng, M. Kates, M.A. Dubé, D. McLean, Biomass Bioenerg. 30, 267 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Demirbas, Energ. Convers. Manage. 50, 923 (2009)Google Scholar
  9. 9.
    H. Yazawa, K. Tanaka, K. Kariyone, Tetrahedron Lett. (1974) 3995Google Scholar
  10. 10.
    E.C. Blossey, L.M. Turner, D.C. Neckers, Tetrahedron Lett. (1973) 1823Google Scholar
  11. 11.
    A. Banerjee, S. Senugupta, M.M. Adak, G.C. Banerjee, J. Org. Chem. 48, 3106 (1983)CrossRefGoogle Scholar
  12. 12.
    R.N. Ram, I. Charles, Tetrahedron 53, 7335 (1997)CrossRefGoogle Scholar
  13. 13.
    A. Rodriguez, M. Nomen, B.W. Spur, J.J. Godfroid, Tetrahedron Lett. 39, 8563 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Saroja, T.N.B. Kaimal, Synth. Commun. 16, 1423 (1986)CrossRefGoogle Scholar
  15. 15.
    B.S. Balaji, M. Sasidharan, R. Kumar, B. Chanda, J. Chem. Soc.,Chem. Commun. (1996) 707Google Scholar
  16. 16.
    I.V. Kozhevnikov, Catalysts for Fine Chemicals, vol. 2: Catalysis by Polyoxometalates, Wiley, Chichester, England, 2002Google Scholar
  17. 17.
    T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41, 113 (1996)CrossRefGoogle Scholar
  18. 18.
    I.V. Kozhevnikov, Chem. Rev. 98, 171 (1998)CrossRefGoogle Scholar
  19. 19.
    J.B. Moffat, Metal–Oxygen Clusters: The Surface and Catalytic Properties of Heteropoly Oxometalates, Kluwer, New York, 2001Google Scholar
  20. 20.
    N. Katada, T. Hatanaka, M. Ota, K. Yamada, K. Okumura, M. Niwa, Appl. Catal. A: Gen. 363, 164 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, L. Xu, B. Xu, Z. Li, L. Jia, W. Guo, J. Mol. Catal. A: Chem. 297, 86 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Tural, Turk. J. Chem. 32, 169 (2008)Google Scholar
  23. 23.
    J. Otera, Chem. Rev. 93, 1449 (1993)CrossRefGoogle Scholar
  24. 24.
    H. Iskra, M. Weber, F. Bauer, C. Tice, E. Fiolitakis, Jpn. Kokai Tokkyo Koho JP 2001233823 (2001)Google Scholar
  25. 25.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  26. 26.
    S. Ajaikumar, A. Pandurangan, J. Mol. Catal. A: Chem. 290, 35 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Ajaikumar, A. Pandurangan, J. Mol. Catal. A: Chem. 286, 21 (2008)CrossRefGoogle Scholar
  28. 28.
    C.-Y. Chen, H.-X. Li, M.E. Davis, Micropor. Mater. 2, 17 (1993)CrossRefGoogle Scholar
  29. 29.
    X.S. Zhao, G.Q. Lu, G.J. Millar, Catal. Lett. 38, 33 (1996)CrossRefGoogle Scholar
  30. 30.
    Q.-H. Xia, K. Hidajat, S. Kawi, J. Catal. 209, 433 (2002)CrossRefGoogle Scholar
  31. 31.
    T.R. Pauly, Y. Liu, T.J. Pinnavaia, S.J.L. Billinge, T.P. Rieler, J. Am. Chem. Soc. 121, 8835 (1992)CrossRefGoogle Scholar
  32. 32.
    L.C. Meher, D. Vidya Sagar, S.N. Naik, Renew. Sust. Energ. Rev. 10, 248 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Technical Chemistry, Chemical-Biological CentreUmeå UniversityUmeåSweden
  2. 2.Department of ChemistryAnna UniversityGuindy, ChennaiIndia
  3. 3.Institute of Catalysis and Petroleum TechnologyAnna UniversityChennaiIndia
  4. 4.Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry CentreÅbo Akademi UniversityTurku/ÅboFinland

Personalised recommendations