Advertisement

Journal of Porous Materials

, Volume 20, Issue 4, pp 741–751 | Cite as

Force fields for classical atomistic simulations of small gas molecules in silicalite-1 for energy-related gas separations at high temperatures

  • Vadim V. Guliants
  • Anthony J. Huth
Article

Abstract

High temperature (>573 K) molecular dynamics studies of gas diffusion in microporous zeolites require consideration of the zeolite framework flexibility. Pore windows can expand and contract at high temperatures, affecting phase space and material properties. No studies to date have addressed the application of the condensed-phase optimized molecular potentials for atomistic simulation studies or the consistent valence force field to simulate gas diffusion and adsorption in siliceous MFI (silicalite-1). The current study seeks to validate these intramolecular and intermolecular potentials along with another zeolite-specific force field reported by Nicholas et al. (JACS 113:4792–4800, 1991) for silicalite-1, one of the most extensively investigated zeolites, with respect to diffusion of several gas molecules. The experimental diffusion coefficients of H2, CO2, CH4, O2 and N2 in silicalite-1 obtained using pulse-field gradient-nuclear magnetic resonance and quasi-elastic neutron scattering methods were compared to theoretically derived diffusion coefficients employing these force fields in molecular dynamics simulations. The diffusion coefficients obtained using the three force fields for H2, CO2, CH4, O2 and N2 agreed well with these experimental data. The zeolite-specific force field of Nicholas et al. was employed in grand canonical Monte Carlo simulations to obtain adsorption isotherms of these gases. The adsorption isotherms and isosteric heats of adsorption predicted were also in agreement with the expected range of available experimental and theoretical adsorption data reported in the literature.

Keywords

Silicalite-1 Molecular dynamics Gas adsorption Gas separation Gas diffusion 

Supplementary material

10934_2012_9649_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1511 kb)

References

  1. 1.
    K. Xie, W. Li, W. Zhao, Coal chemical industry and its sustainable development in China. Energy 35(11), 4349–4355 (2010)CrossRefGoogle Scholar
  2. 2.
    United States Senate Committee on Energy and Natural Resources, Coal gasification: opportunities and challenges. http://www.gpo.gov/fdsys/pkg/CHRG-110shrg37273/html/CHRG-110shrg37273.htm, 2007
  3. 3.
    D.S. Bhange, V. Ramaswamy, Thermal stability of the Mobil Five type metallosilicate molecular sieves—an in situ high temperature X-ray diffraction study. Mater. Res. Bull. 42(2), 851860 (2007)Google Scholar
  4. 4.
    N.K. Bär, H. Jobic, R. Kramer, Diffusion of hydrogen in various zeolites studied by pulsed-field gradient NMR and quasi-elastic neutron scattering techniques. in Proceedings of the 12th International Zeolite Conference, 1999, pp 77–84Google Scholar
  5. 5.
    U. Hong, J. Karger, R. Kramer, PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites. Zeolites 11(8), 816–821 (1991)CrossRefGoogle Scholar
  6. 6.
    H. Jobic, J. Karger, M. Bee, Simultaneous measurement of self- and transport diffusivities in zeolites. Phys. Rev. Lett. 82(21), 4260 (1999)CrossRefGoogle Scholar
  7. 7.
    H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details of alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998)CrossRefGoogle Scholar
  8. 8.
    P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. PROTEINS Struct. Funct. Genet. 4, 31–47 (1988)CrossRefGoogle Scholar
  9. 9.
    D. Dubbeldam, S. Calero, T.J.H. Vlugt, United atom force field for alkanes in nanoporous materials. J. Phys. Chem. B 108(33), 12301–12313 (2004)CrossRefGoogle Scholar
  10. 10.
    J.G. Harris, K.H. Yung, Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)CrossRefGoogle Scholar
  11. 11.
    K. Makrodimitris, G.K. Papadopoulos, D.N. Theodorou, Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations. J. Phys. Chem. B 105, 777–778 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Gallo, T.M. Nenoff, M.C. Mitchell, Selectivities for binary mixtres of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by grand canonical Monte Carlo techniques. Fluid Phase Equilib. 247(1–2), 135–142 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Mellot, J. Lignieres, Monte carlo simulations of N2 and O2 adsorption in silicalite and CaLSX zeolites. Mol. Simul. 18(6), 349 (1997)CrossRefGoogle Scholar
  14. 14.
    D.I. Kopelevich, H. Chang, Diffusion of inert gases in silica sodalite: importance of lattice flexibility. J. Chem. Phys. 115(20), 9519–9527 (2001)CrossRefGoogle Scholar
  15. 15.
    H. Jobic, Diffusion studies using quasi-elastic neutron scattering, in Membrane Science and Technology: Recent Advances in Gas Separation by Microporous Ceramic Membranes, vol. 6, ed. by N.K. Kanellopoulos (Elsevier, Amsterdam, 2000), pp. 109–137CrossRefGoogle Scholar
  16. 16.
    J.B. Nicholas, A.J. Hopfinger, F.R. Trouw, Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field. J. Am. Chem. Soc. 113(13), 4792–4800 (1991)CrossRefGoogle Scholar
  17. 17.
    E. Jaramillo, S.M. Auerbach, New force field for Na cations in faujasite-type zeolites. J. Phys. Chem. B 103(44), 9589–9594 (1999)CrossRefGoogle Scholar
  18. 18.
    S. Calero, D. Dubbeldam, R. Krishna, Understanding the role of sodium during adsorption: a force field for alkanes in sodium-exchanged faujasites. J. Am. Chem. Soc. 109, 91–108 (2008)Google Scholar
  19. 19.
    R. Krishna, J.M. van Baten, Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous Mesoporous Mater. 109, 91–108 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Krishna, J.M. van Baten, Influence of segregated adsorption on mixture diffusion in DDR zeolite. Chem. Phys. Lett. 446, 344–349 (2007)CrossRefGoogle Scholar
  21. 21.
    Accelrys Inc. Materials Studio, vol. 4.2 (2007)Google Scholar
  22. 22.
    G. De Luca, P. Pullumbi, G. Barbieri, Gusev and Suter calculation of the diffusion coefficients of light gases in silicalite-1 membrane and silica-sodalite zeolite. Sep. Purif. Technol. 36(3), 215–228 (2004)CrossRefGoogle Scholar
  23. 23.
    A.A. Gusev, U.W. Suter, Theory for solubility in static systems. Phys. Rev. A 43(12), 6488 (1991)CrossRefGoogle Scholar
  24. 24.
    K.S. Smirnov, D. Bougeard, Molecular dynamics study of the vibrations spectra of siliceous zeolites built from sodalite cages. J. Phys. Chem. 97(37), 9434–9940 (1993)CrossRefGoogle Scholar
  25. 25.
    F. Leroy, B. Rousseau, A.H. Fuchs, Self-diffusion of n-alkanes in silicalite using molecular dynamics simulation: a comparison between rigid and flexible frameworks. Phys. Chem. Chem. Phys. 6, 755–783 (2004)CrossRefGoogle Scholar
  26. 26.
    C. Baerlicher, L.B. McCusker, Database of Zeolite Structures (2010)Google Scholar
  27. 27.
    W. Smith et al., The DL_POLY Molecular Simulation Package (Taylor & Francis, Warrington, 2006)Google Scholar
  28. 28.
    D. Dubbeldam, S. Calero, T.L.M. Maesen, Incommensurate diffusion in confined systems. Phys. Rev. Lett. 90(24), 245901 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Gupta, S. Chempath, M.J. Sanborn, Object-oriented programming paradigms for molecular modeling. Mol. Simul. 29(1), 29 (2003)CrossRefGoogle Scholar
  30. 30.
    D. Wolf, P. Keblinski, S.R. Phillpot, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup-1] summation. J. Chem. Phys. 110(17), 8254–8282 (1999)CrossRefGoogle Scholar
  31. 31.
    W. Zhu, P. Hrabanek, L. Gora, Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45(2), 767–777 (2006)CrossRefGoogle Scholar
  32. 32.
    M.S. Sun, D.B. Shah, H.H. Xu, Adsorption equilibria of C1 to C4 Alkanes, CO2, and SF6 on silicalite. J. Phys. Chem. B 102(8), 1466–1473 (1998)CrossRefGoogle Scholar
  33. 33.
    T.C. Golden, S. Sircar, Gas adsorption on silicalite. J. Colloid Interface Sci. 162(1), 182–188 (1994)CrossRefGoogle Scholar
  34. 34.
    J.A. Dunne, R. Mariwala, M. Rao, Caloric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12(24), 5888–5895 (1996)CrossRefGoogle Scholar
  35. 35.
    A.I. Skoulidas, D.S. Sholl, Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe and SF6 in silicalite from atomistic simulations. J. Phys. Chem. B 106(19), 5058–5067 (2002)CrossRefGoogle Scholar
  36. 36.
    XMGRACE, Free Software Foundation, Inc., http://www.fsf.org
  37. 37.
    F. Muller-Plathe, S.C. Rogers, W.F. van Gunsteren, Computational evidence for anomalous diffusion of small molecules in amorphous polymers. Chem. Phys. Lett. 199, 237–243 (1992)CrossRefGoogle Scholar
  38. 38.
    J. Karger, H. Pfeifer, F. Stallmach, 129Xe and 13C PFR NMR study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites 13, 50–55 (1993)CrossRefGoogle Scholar
  39. 39.
    H. Takaba, A. Yamamoto, K. Hayamizu, Gas diffusion in polycrystalline silicalite membranes investigated by 1H pulse field-gradient NMR. J. Phys. Chem. B 109(29), 13871–13876 (2005)CrossRefGoogle Scholar
  40. 40.
    N.K. Bar, H. Ernst, H. Jobic, Combined quasi-elastic neutron scattering and NMR study of hydrogen diffusion in zeolites. Magn. Reson. Chem. 37, S79–S83 (1999)CrossRefGoogle Scholar
  41. 41.
    Z. Zheng, V.V. Guliants, S. Misture, Sodalites as ultramicroporous frameworks for hydrogen separation at elevated temperatures: thermal stability, template removal, and hydrogen accessibility. J. Porous Mater. 16, 343–347 (2009)CrossRefGoogle Scholar
  42. 42.
    H. Jobic, D.N. Theodorou, Diffusion of long n-alkanes in silicalite: a comparison between neutron scattering experiments and hierarchical simulation results. J. Phys. Chem. B 110(5), 1964–1967 (2006)CrossRefGoogle Scholar
  43. 43.
    H. Takaba, A. Yamamoto, K. Hayamizu, Dependence of the diffusion coefficients of methane in silicalite on diffusion distance as investigated by 1H PFG NMR. Chem. Phys. Lett. 393, 87–91 (2004)CrossRefGoogle Scholar
  44. 44.
    H. Jobic, M. Bee, J. Caro, Molecular self-diffusion of methane in zeolite ZSM-5 by quasi-elastic neutron scattering and nuclear magnetic resonance pulsed field gradient technique. J Chem. Soc. Faraday Trans 1 Phys. Chem. Condens. Phases 85(12), 4201–4209 (1989)Google Scholar
  45. 45.
    G.K. Papadopoulos, H. Jobic, D.N. Theodorou, Transport diffusivity of N2 and CO2 in silicalite: coherent quasielasic neutron scattering measurements and molecular dynamics simulations. J. Phys. Chem. B 108(34), 12748–12756 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Energy, Environment, Biological and Medical EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations