Journal of Porous Materials

, Volume 20, Issue 4, pp 679–692 | Cite as

Trapping of biological macromolecules in the three-dimensional mesocage pore cavities of monolith adsorbents

  • M. A. Shenashen
  • Sherif A. El-Safty
  • M. Khairy


Gene technology is experiencing remarkable progress, and proteins are becoming crucial in the field of disease diagnosis and treatment. Adsorption of biomolecules on the surface of inorganic materials is an important technique for diagnostic assays and gene applications. In this study, highly ordered mesocage cubic Pm3n aluminumsilica monoliths were fabricated by the one-pot direct-templating of a microemulsion of the liquid crystalline phases of a Brij 56 surfactant. Mesocage cubic Pm3n aluminosilica monoliths with well-defined mesostructures offer high adsorption and loading capacity of proteins from an aqueous solution. Three-dimensional monoliths characterized by spherical pore cavities can potentially perform efficient adsorption and trapping of insulin, cytochrome C, lysozyme, myoglobin, β-lactoglobin proteins. A wide variety of characterization techniques such as SAXS, SEM, TEM, the Brunauer–Emmett–Teller method for nitrogen adsorption and surface area measurements, and TEM were used. The adsorption of proteins as well as the kinetic and thermodynamic characteristics of adsorption was studied, and adsorption isotherms were described by the Langmuir equation. Our findings indicated that monolayer coverage of proteins formed on mesoporous adsorbent surfaces during immobilization and uptake assays. Adsorption efficiency of proteins was attained after a number of reuse cycles, which indicates the presence of mesoporous adsorbents of biomolecules. Integration of mesoporous adsorbents may be feasible in various scientific fields such as nanobioscience, material science, artificial implantation, protein purification, biosensors, drug delivery systems, and molecular biology/biotechnology.


Protein Mesocage cavities Trapping Three-dimensional aluminosilica Monoliths Adsorption 


  1. 1.
    F. Bellezza, A. Cipiciani, L. Latterini, T. Posati, P. Sassi, Langmuir 25, 10918 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Deere, E. Magner, J.G. Wall, B.K. Hodnett, Chem. Commun. 5, 465 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Zukal, J. Mayerova, J. Cejka, Phys. Chem. Chem. Phys. 12, 5240 (2010)CrossRefGoogle Scholar
  4. 4.
    Z. Liu, M. Li, X. Yang, M. Yin, J. Ren, X. Qu, Biomaterials 32, 4683 (2011)CrossRefGoogle Scholar
  5. 5.
    J.D. Andrade, V. Hlady, A.P. Wei, Pure Appl. Chem. 64, 1777 (1992)CrossRefGoogle Scholar
  6. 6.
    T.-Y. Ma, X.-J. Zhang, Z.-Y. Yuan, J. Phys. Chem. C 113, 12854 (2009)CrossRefGoogle Scholar
  7. 7.
    S.A. El-Safty, M. Khairy, M. Ismael, H. Kawarada, Appl. Catal. B 123–124, 162 (2012)Google Scholar
  8. 8.
    S.A. El-Safty, M. Khairy, M. Ismeal, Sens. Act. B. 166–167, 253 (2012)CrossRefGoogle Scholar
  9. 9.
    S.B. Hartono, S.Z. Qiao, K. Jack, B.P. Ladewig, Z. Hao, G.Q. Lu, Langmuir 25, 6413 (2009)CrossRefGoogle Scholar
  10. 10.
    I.S. Lee, N.Y. Lee, J. Park, B.H. Kim, Y.W. Yi, T. Kim, J. Am. Chem. Soc. 128, 10658 (2006)CrossRefGoogle Scholar
  11. 11.
    X. Liu, T. Peng, J. Yao, H. Lv, C. Huang, J. Solid State Chem. 183, 1448 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Kim, J.B. Joo, H. Kim, W. Kim, Y. Kim, I.K. Song, J. Yi, Catal. Lett. 104, 181 (2005)CrossRefGoogle Scholar
  13. 13.
    Z. Xu, S.-L. Wang, H.-W. Gao, J. Hazard. Mater. 180, 375 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Lundqvist, I. Sethson, B.H. Jonsson, Langmuir 20, 10639 (2004)CrossRefGoogle Scholar
  15. 15.
    A.A. Vertegel, R.W. Siegel, J.S. Dordick, Langmuir 20, 6800 (2004)CrossRefGoogle Scholar
  16. 16.
    B. Menaa, C. Torres, M. Herrero, V. Rives, A.R.W. Gilbert, D.K. Eggers, Biophys. J. 95, L51–L53 (2008)CrossRefGoogle Scholar
  17. 17.
    S.A. El-Safty, Trends Anal. Chem. 30, 447 (2011)CrossRefGoogle Scholar
  18. 18.
    S.A. El-Safty, M.A. Shenashen, Anal. Chim. Acta 694, 151 (2011)CrossRefGoogle Scholar
  19. 19.
    S.A. El-Safty, A. Shahat, Md.R. Awual, M. Mekawy, J. Mater. Chem. 21, 5593 (2011)CrossRefGoogle Scholar
  20. 20.
    J.J. Chiu, D.J. Pine, S.T. Bishop, B.F. Chmelka, J. Catal. 221, 400 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Galarneau, J. Iapichella, K. Bonhomme, F.D. Renzo, P. Kooyman, O. Terasaki, F. Fajula, Adv. Funct. Mater. 16, 1657 (2006)CrossRefGoogle Scholar
  22. 22.
    S.A. El-Safty, J. Porous Mater. 18, 259 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G.D. Stucky, H.J. Shin, R. Ryoo, Nature 408, 449 (2000)CrossRefGoogle Scholar
  24. 24.
    J.R. Matos, M. Kruk, L.P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T.J. Pinnavaia, Y. Liu, J. Am. Chem. Soc. 125, 821 (2003)CrossRefGoogle Scholar
  25. 25.
    P.I. Ravikovitch, A.V. Neimark, Langmuir 18, 9830 (2002)CrossRefGoogle Scholar
  26. 26.
    M. Thommes, B. Smarsly, M. Groenewolt, P.I. Ravikovitch, A.V. Neimark, Langmuir 22, 756 (2006)CrossRefGoogle Scholar
  27. 27.
    S.A. El-Safty, T. Hanaoka, Chem. Mater. 16, 384 (2004)CrossRefGoogle Scholar
  28. 28.
    S.A. El-Safty, T. Hanaoka, Adv. Mater. 15, 1893 (2003)CrossRefGoogle Scholar
  29. 29.
    S.A. El-Safty, A. Shahat, W. Warkocki, M. Ohnuma, Small 7, 62 (2011)CrossRefGoogle Scholar
  30. 30.
    Y.-Y. Song, F. Schmidt-Stein, S. Berger, P. Schmuki, Small 6, 1180 (2010)CrossRefGoogle Scholar
  31. 31.
    S.A. El-Safty, T. Balaji, H. Matsunaga, T. Hanaoka, F. Mizukami, Angew. Chem. Int. Ed. 45, 7202 (2006)CrossRefGoogle Scholar
  32. 32.
    J.A. Gadsen, Infrared Spectra of Minerals and Related Inorganic compounds (Butterworths, London, 1975)Google Scholar
  33. 33.
    X. Liu, T. Peng, J. Yao, H. Lv, C. Huang, J. Solid State Chem. 183, 1448 (2010)CrossRefGoogle Scholar
  34. 34.
    P. Kim, J.B. Joo, H. Kim, W. Kim, Y. Kim, I.K. Song, J. Yi, Catal. Lett. 104, 181 (2005)CrossRefGoogle Scholar
  35. 35.
    A.R. Garcia, R.B. de Barros, A. Fidalgo, L.M. Ilharco, Langmuir 23, 10164 (2007)CrossRefGoogle Scholar
  36. 36.
    K.J. Klabunde, R.M. Richards, Nanoscale Materials in Chemistry (Wiley, London, 2009)CrossRefGoogle Scholar
  37. 37.
    C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente, J. Cejka, Catal. Rev. 50, 222 (2008)CrossRefGoogle Scholar
  38. 38.
    N. Bejenaru, C. Lancelot, P. Blanchard, C. Lamonier, L. Rouleau, E. Payen, F. Dumeignil, S. Royer, Chem. Mater. 21, 522 (2009)CrossRefGoogle Scholar
  39. 39.
    M.N. Timofeeva, V.N. Panchenko, A. Gil, Y.A. Chesalov, T.P. Sorokina, V.A. Likholobov, Appl. Catal. B Environ. 102, 433 (2011)CrossRefGoogle Scholar
  40. 40.
    B. Chazotte, C.R. Hackenbrock, J. Biol. Chem. 264, 4978 (1989)Google Scholar
  41. 41.
    D.R. Rolison, Science 299, 1698 (2003)CrossRefGoogle Scholar
  42. 42.
    J.J. Pignatello, B. Xing, Environ. Sci. Tech. 30, 1–11 (1996)CrossRefGoogle Scholar
  43. 43.
    B.C. Pan, F.W. Meng, X.Q. Chen, B.J. Pan, X.T. Li, W.M. Zhang, X. Zhang, J.L. Chen, Q.X. Zhang, Y. Sun, J. Hazard. Mater. 124, 74 (2005)CrossRefGoogle Scholar
  44. 44.
    R. Hahn, P. Bauerhansl, K. Shimahara, C. Wizniewski, A. Tscheliessnig, A. Jungbauer, J. Chromatogr. A 1093, 98 (2005)CrossRefGoogle Scholar
  45. 45.
    A. Gil, A. Diaza, M. Montes, D.R. Acosta, D.F. Mexico, J. Mater. Sci. 29, 4927 (1994)CrossRefGoogle Scholar
  46. 46.
    B. Balannec, M. Vourch, M. Rabiller-Baudry, B. Chaufer, Sep. Purif. Technol. 42, 195 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. A. Shenashen
    • 1
    • 3
  • Sherif A. El-Safty
    • 1
    • 2
  • M. Khairy
    • 1
    • 2
  1. 1.National Institute for Materials Science (NIMS)Tsukuba-shiJapan
  2. 2.Graduate School for Advanced Science and EngineeringWaseda UniversityShinjuku-kuJapan
  3. 3.Egyptian Petroleum Research Institute (EPRI)CairoEgypt

Personalised recommendations