Advertisement

Journal of Porous Materials

, Volume 20, Issue 4, pp 673–677 | Cite as

Pore diameter-dependence wettability of porous anodized aluminum oxide membranes

  • Cui Guo
  • Xue-wei Wang
  • Zhi-hao Yuan
Article

Abstract

Porous anodized aluminum oxide membranes with different diameters are fabricated and characterized, and the relation between the pore diameters and the wettability is investigated. The results indicate that changing the diameter of the porous anodized aluminum oxide from 15 to 220 nm causes the wettability on the surface of porous anodized aluminum oxide within the range from hydrophilicity to hydrophobicity. The presence of nanopores is recognized as one of the main causes of the transform of the wettability on the surfaces of the porous anodized aluminum oxide. The wettability-controllable anodized aluminum oxide surface can be an excellent platform on which to elucidate the physical nature of the wetting phenomenon related to the nanostructure and has promising potential in technological applications.

Keywords

Anodized aluminum oxide Pore diameter Hydrophilicity Hydrophobicity 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 10904108 and 21171128), Tianjin Key Subject for Materials Physics and Chemistry.

References

  1. 1.
    D.L. Schmidt, C.E. Coburn, M.D. Benjamin, Nature 368, 39 (1994)CrossRefGoogle Scholar
  2. 2.
    H. Shang, Y. Wang, L.S. Limmer, Thin Solid Films 472, 37 (2005)CrossRefGoogle Scholar
  3. 3.
    Z. Guo, F. Zhou, J. Hao, W. Liu, J. Am. Chem. Soc. 127, 15670 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge, Langmuir 21, 5549 (2005)CrossRefGoogle Scholar
  5. 5.
    L. Jiang, Y. Zhao, J. Zhai, Angew. Chem. Int. Ed. 43, 4338 (2004)CrossRefGoogle Scholar
  6. 6.
    K. Acatay, E. Simsek, C.O. Yang, Y.Z. Menceloglu, Angew. Chem. Int. Ed. 43, 5210 (2004)CrossRefGoogle Scholar
  7. 7.
    M.N. Qu, G.Y. Zhao, Q. Wang, X.P. Cao, J.Y. Zhang, Nanotechnology 19, 055707 (2008)CrossRefGoogle Scholar
  8. 8.
    N.J. Shirtcliffe, G. Mchale, M.I. Newton, G. Chabrol, C.C. Perry, Adv. Mater. 16, 1929 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Wang, S.J. Guo, S.J. Dong, Electrochem. Commun. 10, 655 (2008)CrossRefGoogle Scholar
  10. 10.
    J.M. Xi, L. Feng, L. Jiang, Appl. Phys. Lett. 92, 053102 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Li, W.Z. Jia, Y.Y. Song, X.H. Xia, Chem. Mater. 19, 5758 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Jiang, Z. Wang, X. Yu, F. Shi, H. Xu, X. Zhang, Langmuir 21, 1986 (2005)CrossRefGoogle Scholar
  13. 13.
    N. Zhao, F. Shi, Z. Wang, X. Zhang, Langmuir 21, 4713 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, M. Li, M. Qu, Z. Shi, Langmuir 24, 12651 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Amigoni, E.T. Givenchy, M. Dufay, F. Guittard, Langmuir 25, 1073 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Zhai, F.C. Cebeci, R.E. Cohen, M.F. Rubner, Nano Lett. 4, 1349 (2004)CrossRefGoogle Scholar
  17. 17.
    J.T. Han, S. Kim, A. Karim, Langmuir 23, 2608 (2007)CrossRefGoogle Scholar
  18. 18.
    P.S. Tsai, Y.M. Yang, Y.L. Lee, Langmuir 22, 5660 (2006)CrossRefGoogle Scholar
  19. 19.
    C.T. Hsieh, W.Y. Chen, F.L. Wu, Carbon 46, 1218 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, J. Phys. Chem. B 109, 7746 (2005)CrossRefGoogle Scholar
  21. 21.
    X. Song, J. Zhai, Y. Wang, L. Jiang, J. Phys. Chem. B 109, 4048 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Appl. Surf. Sci. 244, 619 (2005)CrossRefGoogle Scholar
  23. 23.
    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Appl. Surf. Sci. 256, 61 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Dorrer, J. Rühe, Adv. Mater. 20, 159 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Pogreb, G. Whyman, R. Barayev, E. Bormashenko, D. Aurbach, Appl. Phys. Lett. 94, 221902 (2009)CrossRefGoogle Scholar
  26. 26.
    X. Li, B.K. Tay, P. Miele, A. Brioude, D. Cornu, Appl. Surf. Sci. 255, 7147 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, X. Yu, Q. Zhou, F. Chen, K. Li, Appl. Surf. Sci. 256, 1883 (2010)CrossRefGoogle Scholar
  28. 28.
    B. Qian, Z. Shen, Langmuir 21, 9007 (2005)CrossRefGoogle Scholar
  29. 29.
    G. Zhang, D. Wang, Z.Z. Gu, H. Mohwald, Langmuir 21, 9143 (2005)CrossRefGoogle Scholar
  30. 30.
    Y. Li, X.J. Huang, S.H. Heo, C.C. Li, Y.K. Choi, W.P. Cai, S.O. Cho, Langmuir 23, 2169 (2007)CrossRefGoogle Scholar
  31. 31.
    K.Y. Yeh, K.H. Cho, L.J. Chen, Langmuir 25, 14187 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Manca, A. Cannavale, L. Marco, A.S. Arico, R. Cingolani, G. Gigli, Langmuir 25, 6357 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Liu, Y. Chen, W. Xu, W. Liu, Appl. Surf. Sci. 256, 6072 (2010)CrossRefGoogle Scholar
  34. 34.
    R.V. Lakshmi, B.J. Basu, J. Coll. Inter. Sci. 339, 454 (2009)CrossRefGoogle Scholar
  35. 35.
    Z. Ma, Y. Hong, L. Ma, M. Su, Langmuir 25, 5446 (2009)CrossRefGoogle Scholar
  36. 36.
    Y. Li, C.C. Li, S.O. Cho, G.T. Duan, W.P. Cai, Langmuir 23, 9802 (2007)CrossRefGoogle Scholar
  37. 37.
    G. Momen, M. Farzaneh, R. Jafari, Appl. Surf. Sci. 257, 6489 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Kemell, E. Färm, M. Leskelä, M. Ritala, Phys. Stat. Sol. (a) 203, 1453 (2006)CrossRefGoogle Scholar
  39. 39.
    C. Ran, G. Ding, W. Liu, Y. Deng, W. Hou, Langmuir 24, 9952 (2008)CrossRefGoogle Scholar
  40. 40.
    K. Ranaa, G. Kucukayan-Dogub, E. Bengu, Appl. Surf. Sci. 258, 7112 (2012)CrossRefGoogle Scholar
  41. 41.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)CrossRefGoogle Scholar
  42. 42.
    A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, J. Appl. Phys. 84, 6023 (1998)CrossRefGoogle Scholar
  43. 43.
    X.W. Wang, G.T. Fei, X.J. Xu, Z. Jin, L.D. Zhang, J. Phys. Chem. B 109, 24326 (2005)CrossRefGoogle Scholar
  44. 44.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)CrossRefGoogle Scholar
  45. 45.
    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)CrossRefGoogle Scholar
  46. 46.
    L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 41, 1221 (2002)CrossRefGoogle Scholar
  47. 47.
    E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle, Nano Lett. 5, 2097 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Wang, L. Jiang, Adv. Mater. 19, 3423 (2007)CrossRefGoogle Scholar
  49. 49.
    G. Mchale, Langmuir 23, 8200 (2007)CrossRefGoogle Scholar
  50. 50.
    X.J. Huang, J.H. Lee, J.W. Lee, J.B. Yoon, Y.K. Choi, Small 4, 211 (2008)CrossRefGoogle Scholar
  51. 51.
    W. Lee, B.G. Park, D.H. Kim, D.J. Ahn, Y. Prak, S.H. Lee, K.B. Lee, Langmuir 26, 1412 (2010)CrossRefGoogle Scholar
  52. 52.
    J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Adv. Mater. 22, 2151 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinPeople’s Republic of China
  2. 2.Tianjin Key Lab for Photoelectric Materials and DevicesTianjinPeople’s Republic of China
  3. 3.Key Laboratory of Display Materials and Photoelectric Devices (Tianjin University of Technology), Ministry of EducationTianjinPeople’s Republic of China

Personalised recommendations