Journal of Porous Materials

, Volume 20, Issue 4, pp 663–671 | Cite as

Novel porous organosilica containing amino and β-cyclodextrin groups

  • Stephanie Degoutin
  • Maryse Bacquet


The elaboration of new hybrid mesoporous silica materials containing β-cyclodextrin groups and amine functions is reported. The synthesis is based on a direct co-condensation between β-CDAPS, a hybrid precursor obtained by reaction between tosyl-β-cyclodextrin and aminopropyltrimethoxysilane previously described, and tetraethyl orthosilicate via a sol–gel pathway templated by three different surfactants: anionic (sodium dodecylsulfate), cationic (cetyltrimethylammonium bromide) or neutral (Triton X-45) ones. The chemical structure and morphology are characterized and analyzed for all the series. Finally, the templating based mechanisms are investigated by comparing these samples with series prepared without template or without cyclodextrin.


Organosilica Porous materials β-cyclodextrin Templating mechanisms 


  1. 1.
    J. Brown, L. Mercier, T.J. Pinnavaia, Chem. Commun. (Cambridge). 69–70 (1999)Google Scholar
  2. 2.
    T. Yokoi, H. Yoshitake, T. Yamada, Y. Kubota, T. Tatsumi, J. Mater. Chem. 16, 1125–1135 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.-S. Jun, Y.S. Huh, H.S. Park, A. Thomas, S.J. Jeon, E.Z. Lee, H.J. Won, W.H. Hong, S.Y. Lee, Y.K. Hong, J. Phys. Chem. C 111, 13076–13086 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Brady, B. Woonton, M.L. Gee, A.J. O’Connor, Innov. Food Sci. Emerg. Technol. 9, 243–248 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Hartmann, Chem. Mater. 17, 4577–4593 (2005)CrossRefGoogle Scholar
  6. 6.
    C. Li, J. Liu, X. Shi, J. Yang, Q. Yang, J. Phys. Chem. C 111, 10948–10954 (2007)CrossRefGoogle Scholar
  7. 7.
    Q. Gao, W. Xu, Y. Xu, D. Wu, Y. Sun, F. Deng, W. Shen, J. Phys. Chem. B 112, 2261–2267 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Walcarius, Electroanalysis 20, 711–738 (2008)CrossRefGoogle Scholar
  9. 9.
    M.-L. Hsieh, G.-Y. Li, L.-K. Chau, Y.-S. Hon, J. Sep. Sci. 31, 1819–1827 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Sanchez, B. Lebeau, F. Chaput, J.-P. Boilot, Adv. Mater. (Weinheim, Ger.) 15, 1969–1994 (2003)CrossRefGoogle Scholar
  11. 11.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard et al., J. Am. Chem. Soc. 114, 10834–10843 (1992)CrossRefGoogle Scholar
  12. 12.
    A. Berggren, A.E.C. Palmqvist, K. Holmberg, Soft Matter 1, 219–226 (2005)CrossRefGoogle Scholar
  13. 13.
    F. Hoffmann, M. Cornelius, J. Morell, M. Froeba, J. Nanosci. Nanotechnol. 6(2), 265–288 (2006)Google Scholar
  14. 14.
    D.J. Macquarrie, D.B. Jackson, S. Tailland, K.A. Utting, J. Mater. Chem. 11, 1843–1849 (2001)CrossRefGoogle Scholar
  15. 15.
    T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Chem. Mater. 11, 2633–2656 (1999)CrossRefGoogle Scholar
  16. 16.
    J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56–77 (1999)CrossRefGoogle Scholar
  17. 17.
    S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Science (Washington, D. C.) 269, 1242–1244 (1995)CrossRefGoogle Scholar
  18. 18.
    K. Fujimura, T. Ueda, T. Ando, Anal. Chem. 55, 446–450 (1983)CrossRefGoogle Scholar
  19. 19.
    D.W. Armstrong, W. DeMond, J. Chromatogr. Sci. 22, 411–415 (1984)CrossRefGoogle Scholar
  20. 20.
    T.N.T. Phan, M. Bacquet, J. Laureyns, M. Morcellet, Phys. Chem. Chem. Phys. 1, 5189–5195 (1999)CrossRefGoogle Scholar
  21. 21.
    T.N.T. Phan, M. Bacquet, M. Morcellet, React. Funct. Polym. 52, 117–125 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Ponchel, S. Abramson, J. Quartararo, D. Bormann, Y. Barbaux, E. Monflier, Microporous Mesoporous Mater. 75, 261–272 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Ghoul, M. Bacquet, G. Crini, M. Morcellet, J. Appl. Polym. Sci. 90, 799–805 (2003)CrossRefGoogle Scholar
  24. 24.
    R. Huq, L. Mercier, P.J. Kooyman, Chem. Mater. 13, 4512–4519 (2001)CrossRefGoogle Scholar
  25. 25.
    R. Sawicki, L. Mercier, Environ. Sci. Technol. 40, 1978–1983 (2006)CrossRefGoogle Scholar
  26. 26.
    C. Liu, J.B. Lambert, L. Fu, J. Org. Chem. 69, 2213–2216 (2004)CrossRefGoogle Scholar
  27. 27.
    C. Liu, N. Naismith, J. Economy, J. Chromatogr. A 2004, 113–118 (1036)Google Scholar
  28. 28.
    C. Liu, J. Wang, J. Economy, Macromol. Rapid Commun. 25, 863–866 (2004)CrossRefGoogle Scholar
  29. 29.
    S. Willai, M. Bacquet, M. Morcellet, in Silicon based polymers: Advances in synthesis and supramolecular organization, ed. by F. Ganachaud, S. Boileau, B. Boury (Springer, New York, 2008), pp. 213–221CrossRefGoogle Scholar
  30. 30.
    J.N. Israelachvili, Intermolecular and surface forces, 3rd edn. (Academic Press, New York, 2010), p. 372Google Scholar
  31. 31.
    E. Junquera, G. Tardajos, E. Aicart, Langmuir 9, 1213–1219 (1993)CrossRefGoogle Scholar
  32. 32.
    C. Vautier-Giongo, H.O. Pastore, J. Colloid Interface Sci. 299, 874–882 (2006)CrossRefGoogle Scholar
  33. 33.
    J.B.F.N. Engberts, Recl. Trav. Chim. Pays-Bas 113, 113 (1994)Google Scholar
  34. 34.
    R. Guo, X.J. Zhu, X. Guo, Colloid Polym. Sci. 281, 876–881 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.Unité des Matériaux et Transformations (UMET)CNRS-UMR 8207Villeneuve d’Ascq CedexFrance

Personalised recommendations