Advertisement

Journal of Porous Materials

, Volume 20, Issue 1, pp 235–247 | Cite as

A molecular dynamics and grand canonical Monte Carlo study of silicalite-1 as a membrane material for energy-related gas separations

  • Vadim V. Guliants
  • Anthony J. Huth
  • John M. Stueve
Article

Abstract

Hydrogen separation and combustion subsequent to coal gasification is highly attractive as an environmentally benign method of energy generation. Siliceous zeolites are thermally and chemically stable microporous materials that can satisfy the function of a gas separation membrane for such high temperature (>473 K) processes. Ensuing steam generation via hydrogen combustion can consequently occur without significant energy loss. Silicalite-1 is attractive for the separation of smaller H2 (2.89 Å) from larger CO2, CH4, N2 and O2 molecules with kinetic diameters of 3.30, 3.80, 3.64 and 3.46 Å, respectively. The current study employs molecular dynamics and grand canonical Monte Carlo approaches to predict single-component gas diffusivities and adsorption isotherms for H2, CO2, CH4, N2 and O2 in silicalite-1 at 273–1,073 K. The respective gas diffusivities and adsorption loadings determined in this study enable prediction of separation characteristics of silicalite-1 at relevant process conditions. Adsorption of all gases, excluding H2, is relatively high at ambient temperature and significantly affects overall mass transport and separation selectivity. Hydrogen adsorption is relatively low even at ambient temperature, and at elevated temperatures (>473 K), adsorption of all gases is low, resulting in mass transport and separation selectivity that is dependent upon molecular diffusivity.

Keywords

MFI Gas separation GCMC Silicalite-1 

Supplementary material

10934_2012_9593_MOESM1_ESM.docx (6 mb)
Supplementary material 1 (DOCX 6156 kb)

References

  1. 1.
    United States Senate Committee on Energy and Natural Resources. Coal gasification: Opportunities and challenges. http://www.gpo.gov/fdsys/pkg/CHRG-110shrg37273/html/CHRG-110shrg37273.htm (2007)
  2. 2.
    K. Xie, W. Li, W. Zhao, Coal chemical industry and its sustainable development in China. Energy 35(11), 4349–4355 (2010)CrossRefGoogle Scholar
  3. 3.
    D.S. Bhange, V. Ramaswamy, Thermal stability of the Mobil Five type metallosilicate molecular sieves—An in situ high temperature X-ray diffraction study. Mater. Res. Bull. 42(2), 851860 (2007)Google Scholar
  4. 4.
    J.B. Nicholas, A.J. Hopfinger, F.R. Trouw, Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field. J. Am. Chem. Soc. 113(13), 4792–4800 (1991)CrossRefGoogle Scholar
  5. 5.
    K. Makrodimitris, G.K. Papadopoulos, D.N. Theodorou, Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations. J. Phys. Chem. B 105, 777–778 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Gallo, T.M. Nenoff, M.C. Mitchell, Selectivities for binary mixtres of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques. Fluid Phase Equilib. 247(1–2), 135–142 (2006)CrossRefGoogle Scholar
  7. 7.
    R. Babarao, J. Jiang, Diffusion and separation of CO2 and CH4 in Silicalite, C168 Schwarzite and IRMOF-1: A comparative molecular dynamics simulation. Langmuir 24(10), 5474–5484 (2008)CrossRefGoogle Scholar
  8. 8.
    W. Zhu, P. Hrabanek, L. Gora, Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45(2), 767–777 (2006)CrossRefGoogle Scholar
  9. 9.
    R. Krishna, J.M. van Baten, Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous Mesoporous Mater. 109, 91–108 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Himeno, M. Takenaka, S. Shimura, Light gas adsorption of all-silica DDR- and MFI- type zeolite: Computational and experiemtnal investigation. Mol. Simul. 34(10), 1329 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Nagumo, H. Takaba, S. Suzuki, Estimation of inorganic gas permeability through an MFI-type silicalite membrane by a molecular simulation technique combined with permeation theory. Microporous Mesoporous Mater. 48(1–3), 247–254 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Kanezashi, Y.S. Lin, Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures. J. Phys. Chem. C 113(9), 3767–3774 (2009)CrossRefGoogle Scholar
  13. 13.
    Z. Tang, J. Dong, T.M. Nenoff, Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir 25(9), 4848–4852 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Takata, T. Tsuru, T. Yoshioka, Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene. Microsporous Mesoporous Mater. 54(3), 257–268 (2002)CrossRefGoogle Scholar
  15. 15.
    C. Ratnasamy, J.P. Wagner, Water gas shift catalysis. Catal. Rev. Sci. Eng. 51(3), 325 (2009)CrossRefGoogle Scholar
  16. 16.
    W.H. Cooper, Producing electricity and chemicals simultaneously. Chem. Eng. Prog. 106(2), 24–32 (2010)Google Scholar
  17. 17.
    United States Department of Energy. Hydrogen from coal program: Development and demonstration plan (2008)Google Scholar
  18. 18.
    United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2008 (U.S. EPA, Washington, DC, 2010)Google Scholar
  19. 19.
    B.J.P. Buhre, L.K. Elliott, C.D. Sheng, R.P. Gupta, T.F. Wall, Oxy-fuel combustion technology for coal fired power generation. Prog. Energy Combust. Sci. 31(4), 283–307 (2005)CrossRefGoogle Scholar
  20. 20.
    B. Metz, O. Davidson, H. deConinck, IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge University Press, New York, NY, 2005)Google Scholar
  21. 21.
    Natural Gas Supply Association. http://naturalgas.org
  22. 22.
    C. Baerlicher, L. B. McCusker, Database of Zeolite Structures (2010)Google Scholar
  23. 23.
    Smith et al. The DL_POLY Molecular Simulation Package (Warrington, England, 2006)Google Scholar
  24. 24.
    D. Dubbeldam, S. Calero, T.L.M. Maesen, Incommensurate diffusion in confined systems. Phys. Rev. Lett. 90(24), 245901 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Gupta, S. Chempath, M.J. Sanborn, Object-oriented programming paradigms for molecular modeling. Mol. Simul. 29(1), 29 (2003)CrossRefGoogle Scholar
  26. 26.
    D. Wolf, P. Keblinski, S.R. Phillpot, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup-1] summation. J. Chem. Phys. 110(17), 8254–8282 (1999)CrossRefGoogle Scholar
  27. 27.
    D.I. Kopelevich, H. Chang, Diffusion of inert gases in silica sodalite: Importance of lattice flexibility. J. Chem. Phys. 115(20), 9519–9527 (2001)CrossRefGoogle Scholar
  28. 28.
    D. Dubbeldam, S. Calero, T.J.H. Vlugt, United atom force field for Alkanes in Nanoporous materials. J. Phys. Chem. B 108(33), 12301–12313 (2004)CrossRefGoogle Scholar
  29. 29.
    J.G. Harris, K.H. Yung, Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)CrossRefGoogle Scholar
  30. 30.
    C. Mellot, J. Lignieres, Monte Carlo simulations of N2 and O2 adsorption in silicalite and CaLSX zeolites. Mol. Simul. 18(6), 349 (1997)CrossRefGoogle Scholar
  31. 31.
    K.S. Smirnov, D. Bougeard, Molecular dynamics study of the vibrations spectra of siliceous zeolites built from sodalite cages. J. Phys. Chem. 97(37), 9434–9440 (1993)CrossRefGoogle Scholar
  32. 32.
    F. Leroy, B. Rousseau, A.H. Fuchs, Self-diffusion of n-alkanes in silicalite using molecular dynamics simulation: A comparison between rigid and flexible frameworks. Phys. Chem. Chem. Phys. 6, 755–783 (2004)CrossRefGoogle Scholar
  33. 33.
    F. Muller-Plathe, S.C. Rogers, W.F. van Gunsteren, Computational evidence for anomalous diffusion of small molecules in amorphous polymers. Chem. Phys. Lett. 199, 237–243 (1992)CrossRefGoogle Scholar
  34. 34.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 2007)Google Scholar
  35. 35.
    D.S. Sholl, Predicting single-component permeance through macroscopic zeolite membranes from atomistic simulations. Ind. Eng. Chem. Res. 39(10), 3737–3746 (2000)CrossRefGoogle Scholar
  36. 36.
    S.M. Auerbach, Theory and simulations of jump dynamics, diffusion, and phase equilibrium in nanopores. Int. Rev. Phys. Chem. 19(2), 155 (2000)CrossRefGoogle Scholar
  37. 37.
    C.H. Mak, H.C. Andersen, S.M. George, Monte Carlo studies of diffusion on inhomogeneous surfaces. J. Chem. Phys. 88(6), 4052–4061 (1988)CrossRefGoogle Scholar
  38. 38.
    C. Uebing, R. Gomer, Determination of surface diffusion coefficients by Monte Carlo methonds: Comparison of Fluctuation and Kubo-Green methods. J. Chem. Phys. 36(10), 7759–7766 (1994)CrossRefGoogle Scholar
  39. 39.
    G. De Luca, P. Pullumbi, G. Barbieri, Gusev and Suter calculation of the diffusion coefficients of light gases in silicalite-1 membrane and silica-sodalite zeolite. Sep. Purif. Technol. 36(3), 215–228 (2004)CrossRefGoogle Scholar
  40. 40.
    A.I. Skoulidas, D.S. Sholl, R. Krishna, Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite: A study linking MD simulations with the Maxwell-Stefan formulation. Langmuir 19(19), 7977–7988 (2003)CrossRefGoogle Scholar
  41. 41.
    A.I. Skoulidas, D.S. Sholl, Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J. Phys. Chem. A 107(47), 10132–10141 (2003)CrossRefGoogle Scholar
  42. 42.
    D.A. Reed, G. Ehrlich, Surface diffusion, atomic jump rates, and thermodynamics. Surf. Sci. 102, 588–609 (1981)CrossRefGoogle Scholar
  43. 43.
    M. Kanezashi, J. O’Brian-Abraham, Y.S. Lin, Gas permeation through DDR-type zeolite membranes at high temperatures. AIChE J. 54(6), 1478–1486 (2008)CrossRefGoogle Scholar
  44. 44.
    M.C. Mitchell, J.D. Autry, T.M. Nenoff, Molecular dynamics simulations of binary mixtures of methane and hydrogen in zeolite A and a novel zinc phosphate. Mol. Phys. 99(22), 1831 (2001)CrossRefGoogle Scholar
  45. 45.
    A.W.C. van den Berg, S.T. Bromley, E. Flikkema, Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite. J. Chem. Phys. 120(21), 10258–10289 (2004)Google Scholar
  46. 46.
    A.W.C. van den Berg, S.T. Bromley, N. Ramsahye, Diffusion of molecular hydrogen through porous materials: The importance of framework flexibility. J. Phys. Chem. B 108(16), 5088–5094 (2004)CrossRefGoogle Scholar
  47. 47.
    A.I. Skoulidas, D.S. Sholl, Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe and SF6 in Silicalite from atomistic simulations. J. Phys. Chem. B 106(19), 5058–5067 (2002)CrossRefGoogle Scholar
  48. 48.
    A.I. Skoulidas, D.S. Sholl, Direct tests of the darken approximation for molecular diffusion in zeolites using equilibrium molecular dynamics. J. Phys. Chem. B 105(16), 3151–3154 (2001)CrossRefGoogle Scholar
  49. 49.
    F.J. Keil, R. Krishna, M. Coppens, Modeling of diffusion in zeolites. Rev. Chem. Eng. 16(2), 71–197 (2000)CrossRefGoogle Scholar
  50. 50.
    R. Krishna, J.M. van Baten, Influence of segregated adsorption on mixture diffusion in DDR zeolite. Chem. Phys. Lett. 446, 344–349 (2007)CrossRefGoogle Scholar
  51. 51.
    Free Software Foundation, Inc. XMGRACEGoogle Scholar
  52. 52.
    J.A. Dunne, R. Mariwala, M. Rao, Caloric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12(24), 5888–5895 (1996)CrossRefGoogle Scholar
  53. 53.
    M. Krutyeva, S. Vasenov, X. Yang, Surface barriers on nanoporous particles: A new method of their quantification by PFG NMR. Microporous Mesoporous Mater. 104, 89–96 (2007)CrossRefGoogle Scholar
  54. 54.
    J. Dong, Y.S. Lin, M.Z.-C. Hu, R.A. Peascoe, E.A. Payzant, Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes. Microporous Mesoporous Mater. 34(3), 241–253 (2000)CrossRefGoogle Scholar
  55. 55.
    P. Lightfoot, D.A. Woodcock, M.J. Maple, L.A. Villaescusa, P.A. Wright, The widespread occurrence of negative thermal expansion in zeolites. J. Mater. Chem. 11(1), 212–216 (2001)CrossRefGoogle Scholar
  56. 56.
    M.P. Attfield, A.W. Sleight, Strong negative thermal expansion in siliceous faujasite. Chem. Commun. (5), 601–602 (1998)Google Scholar
  57. 57.
    M. Niwa, M. Kato, T. Hattori, Fine control of the pore-opening size of zeolite ZSM-5 by chemical vapor deposition of silicon methoxide. J. Phys. Chem. 90(23), 6233–6237 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vadim V. Guliants
    • 1
  • Anthony J. Huth
    • 1
  • John M. Stueve
    • 1
  1. 1.School of Energy, Environmental, Biological and Medical EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations