Journal of Porous Materials

, Volume 19, Issue 1, pp 133–139 | Cite as

Zeolite Y synthesized with FCC spent catalyst fines: particle size effect on catalytic reactions

  • Xinmei Liu
  • Liang Li
  • Tingting Yang
  • Zifeng Yan


In this study, Y zeolite with different particle sizes was synthesized with fines of Fluid Catalytic Cracking (FCC) spent catalyst. The effect of particle size on physicochemical properties of zeolite was systematically investigated. The results showed that zeolites synthesized via in situ crystallization technique exhibited large surface area, high relative crystallinity and high thermal stability. With a decrease of particle size of zeolite, both total acid density and B acid sites increased while acid L sites decreased. The cracking activity for heavy oil and coke resistance of ultra-fine zeolite catalysts were enhanced. Of note is that the desulfurization capability of superfine zeolite catalyst was found to be much higher than that of industrial catalyst.


Particle size effect FCC spent catalyst fines Zeolite Y Cracking activity 



We thank Mr. H.P. Wang for his kind helps in XRD analysis, and Ms. L. Wen for kind assistance in SEM experiments.


  1. 1.
    X.M. Liu, H.N. Liang, L. Li, T.T. Yang, Z.F. Yan, Chin. J. Catal. 31(7), 833 (2010)CrossRefGoogle Scholar
  2. 2.
    E. Furimsky, Catal. Today 30, 223 (1996)CrossRefGoogle Scholar
  3. 3.
    K.M.M. Aung, Y.-P. Ting, J. Biotechnol. 116, 159 (2005)CrossRefGoogle Scholar
  4. 4.
    E.I. Basaldella, J.C. Paladino, M. Solari et al., Appl. Catal. B Environ. 66(3–4), 186 (2006)CrossRefGoogle Scholar
  5. 5.
    H. Al-Sheeha, M. Marafi, A. Stanislaus, Int. J. Miner. Process. 88(3–4), 59 (2008)CrossRefGoogle Scholar
  6. 6.
    S.I. Cho, K.S. Jung, S.I. Woo, Appl. Catal. B: Environ. 33, 249 (2001)CrossRefGoogle Scholar
  7. 7.
    C. Covarrubias, R. Quijada, R. Rojas, Micropor. Mesopor. Mater. 117, 118 (2009)CrossRefGoogle Scholar
  8. 8.
    M.V. Landau, L. Vradman, V. Valtchev, J. Lezervant, E. Liubich, M. Talianker, Ind. Eng. Chem. Res. 42, 2773 (2003)CrossRefGoogle Scholar
  9. 9.
    L.H. Ding, Y. Zheng, H. Yang, R. Parviz, Appl. Catal. A General 353, 17 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.M. Ni, A.M. Sun, X.L. Wu, G.L. Hai, J.L. Hu, T. Li, G.X. Li, Micropor. Mesopor. Mater. 143, 435 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Ferchiche, J. Warzywoda, A. Sacco Jr., Int. J. Inorg. Mater. 3, 773 (2001)CrossRefGoogle Scholar
  12. 12.
    B. Lucio, C. Luigi, P. Edoardo, Micropor. Mesopor. Mater. 144, 40 (2011)CrossRefGoogle Scholar
  13. 13.
    S.Y. Yang, A. Navrotsky, J. Phys. Chem. B 104, 6071 (2000)CrossRefGoogle Scholar
  14. 14.
    D. Karami, S. RohaniInd, Eng. Chem. Res. 48, 4837 (2009)CrossRefGoogle Scholar
  15. 15.
    E.I. Basaldella, R. Bonetto, J.C. Tara, Ind. Eng. Chem. Res. 32, 751 (1993)CrossRefGoogle Scholar
  16. 16.
    J.M. Fedeyko, H. Egolf-Fox, D.W. Fickel, D.G. Vlachos, R.F. Lobo, Langmuir 23, 4532 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis CNPCChina University of PetroleumQingdaoChina

Personalised recommendations