Journal of Porous Materials

, Volume 19, Issue 5, pp 587–595 | Cite as

In situ synthesis of monolithic molecularly imprinted stationary phases for liquid chromatographic enantioseparation of dibenzoyl tartaric acid enantiomers

  • Xiaoqing Chen
  • Weijie Yang
  • Yangmeihui Zhou
  • Feipeng Jiao


A monolithic molecularly imprinted polymer (monolithic MIP) for dibenzoyl-D-tartaric acid (D-DBTA) was prepared in a stainless-steel chromatographic column tube (50 mm × 4.6 mm I.D.) as HPLC stationary phase through in situ polymerization. By optimizing polymeric and chromatographic conditions, the chiral separation of DBTA enantiomers was successfully achieved in the obtained MIP in less than 25 min with a resolution Rs = 1.25, whereas no enantioseparation effect was found on the monolithic non-imprinted polymer (NIP). Thermodynamic data of the enantioseparation were calculated. The results revealed that two different thermodynamic processes existed within the temperature range investigated, moreover, just at the transition temperature (50 °C) of the two processes, separation factor α reached its maximum. Scathcard analysis indicated that only one class of binding sites existed in the obtained MIP, with its K d and Q max estimated to be 5.457 × 10−4 mol L−1 and 229.6 μmol g−1, respectively. Nitrogen adsorption experiment proved that the prepared MIP had a large specific surface area of 105 m2 g−1. Scanning electron microscopy showed that large flow-through pores were present in the prepared monolith. As a consequence, the column backpressure was only 1.2 MPa with acetonitrile as mobile phase at a flow rate of 1.0 mL min−1.


DBTA Enantioseparation In situ synthesis Monolithic column Molecularly imprinted polymer 



We acknowledge the supports given to this work by the China National Natural Science Foundation (Project No. 20805058) and Hunan Provincial Postdoctoral Special Foundation of China (Project No. 2009RS3039) and Hunan Provincial Natural Science Foundation of China (Project No. 09JJ3026) and Undergraduate Innovational Experimentation Program of Central South University (LB10055).


  1. 1.
    G. Wulff, A. Sarhan, Angew. Chem. Int. Ed. Engl. 11, 341 (1972)Google Scholar
  2. 2.
    R. Arshady, K. Mosbach, Macromol. Chem. Phys. 182, 687 (1981)CrossRefGoogle Scholar
  3. 3.
    G. Cirillo, M. Curcio, O.I. Parisi, F. Puoci, F. Iemma, U.G. Spizzirri, D. Restuccia, N. Picci, Anal Methods 125, 1058 (2011)Google Scholar
  4. 4.
    X.L. Sun, X.W. He, L.X. Chen, Y.K. Zhang et al., Talanta 79, 926 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Conesa, C. Palet, Desalination 200, 110 (2006)CrossRefGoogle Scholar
  6. 6.
    B.B. Prasad, R. Madhuri, M.P. Tiwari, P.S. Sharma, Electrochim. Acta. 55, 9146 (2010)CrossRefGoogle Scholar
  7. 7.
    D.L. Rathbone, Adv. Drug. Deliv. Rev. 57, 1854 (2005)CrossRefGoogle Scholar
  8. 8.
    O. Brüggemann, Anal. Chim. Acta 435, 197 (2001)CrossRefGoogle Scholar
  9. 9.
    G. Guiochon, J. Chromatogr. A 1168, 101 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Ikegamil, N. Tanaka, Curr. Opin. Chem. Biol. 8, 527 (2004)CrossRefGoogle Scholar
  11. 11.
    K. Cabrera, D. Lubda, H.M. Eggenweiler, J. High. Res. Chromosome 23, 93 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Kato, K. Sakai-Kato, N. Matsumoto, T. Toyo’oka, Anal. Chem. 74, 1915 (2002)CrossRefGoogle Scholar
  13. 13.
    J. Matsui, T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya, I. Karube, Anal. Chem. 65, 2223 (1993)CrossRefGoogle Scholar
  14. 14.
    B. Tan, G.S. Luo, X. Qi, J.D. Wang, Sep. Sci. Technol. 49, 186 (2006)Google Scholar
  15. 15.
    B. Tan, G.S. Luo, J.D. Wang, Tetrahedron Asymmetry 17, 883 (2006)CrossRefGoogle Scholar
  16. 16.
    Z.G. Yang, Z.L. XU, J. Funct. Polym. 18, 36 (2005)Google Scholar
  17. 17.
    Y. Lu, C.X. Li, H.S. Zhang, X.H. Liu, Anal. Chim. Acta 489, 33 (2003)CrossRefGoogle Scholar
  18. 18.
    D. Batra, K.J. Shea, Curr. Opin. Chem. Biol. 7, 434 (2003)CrossRefGoogle Scholar
  19. 19.
    H.S. Andersson, J.G. Karlsson, S.A. Piletsky, A.-C. Koch-Schmidt, K. Mosbach, I.A. Nicolls, J. Chromatogr. A 848, 39 (1999)CrossRefGoogle Scholar
  20. 20.
    M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular Imprinting: From Fundamentals to Applications, 3rd edn. (WILEY-VCH Verlag GmbH & Co. KGaA, Germany, 2003), pp 24Google Scholar
  21. 21.
    M. Li, X.C. Lin, Z.H. Xie, J. Chromatogr. A 1216, 5320 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, C.X. Li, X.D. Wang, P.C. Sun, X.H. Xing, J. Chromatogr. B 804, 53 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Yan, O. Ramstrom, Molecularly Imprinted Materials: Science and Technology, 1st edn. (Madison Dekker, New York, 2005), p. 9Google Scholar
  24. 24.
    T.Y. Guo, L.Y. Zhang, G.J. Hao, M.D. Song, B.H. Zhang, Chin. J. Anal. Chem. 32, 705 (2004)Google Scholar
  25. 25.
    X.D. Huang, F. Qin, X.M. Chen, Y.Q. Liu, H.F. Zou, J. Chromatogr. B 804, 13 (2004)CrossRefGoogle Scholar
  26. 26.
    F. Jiao, X. Chen, Y. Hu, Z. Wang, J. Iran. Chem.Soc. 5, 553 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiaoqing Chen
    • 1
  • Weijie Yang
    • 1
  • Yangmeihui Zhou
    • 1
  • Feipeng Jiao
    • 1
  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations