Skip to main content
Log in

α-Amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

α-Amylase was encapsulated in several mesoporous materials (folded sheet mesoporous silica (FSM), cubic mesoporous silica (KIT-6), and two-dimensional hexagonal mesoporous silica (SBA-15)) that differed morphologically in terms of particle shape, pore size, and pore structure. The encapsulation capacity and thermal stability of encapsulated α-amylase were examined. The amount of α-amylase encapsulated increased with increasing pore size in the following order: SBA-15 < KIT-6 < FSM. Nitrogen adsorption experiments were performed before and after α-amylase encapsulation in mesoporous silicas with pore sizes larger than the size of α-amylase, confirming that α-amylase was encapsulated in the pores. Among mesoporous silicas with similar pore sizes, FSM was found to have the highest capacity for α-amylase encapsulation both per weight and per surface area of silica. Furthermore, α-amylase encapsulated in FSM demonstrated high thermal stability at 90 °C relative to the thermal stability of free α-amylase or free α-amylase encapsulated in other mesoporous silicas. Zeta potential measurements showed that the FSM surface had an isoelectric point that was lower than that of other mesoporous silicas, and hydrophilicity measurements showed that its surface was more hydrophilic. The surface properties of FSM contributed to the high thermal stability of the α-amylase encapsulated within the pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Aehle, Enzymes in Industry: Production and Applications (Wiley-VCH, New York, 2007)

    Google Scholar 

  2. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  3. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990)

    Article  CAS  Google Scholar 

  4. S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582 (2008)

    Article  CAS  Google Scholar 

  5. M. Hartmann, Chem. Mater. 17, 4577 (2005)

    Article  CAS  Google Scholar 

  6. A. Takimoto, T. Shiomi, K. Ino, T. Tsunoda, A. Kawai, F. Mizukami, K. Sakaguchi, Micropor. Mesopor. Mater 116, 601 (2008)

    Article  CAS  Google Scholar 

  7. E.L. Pires, E.A. Miranda, G.P. Valenca, Appl. Biochem. Biotechnol. 98–100, 963 (2002)

    Article  Google Scholar 

  8. S. Hudson, J. Cooney, B.K. Hodnett, E. Magner, Chem. Mater. 19, 2049 (2007)

    Article  CAS  Google Scholar 

  9. C. Montiel, E. Terres, J.M. Dominguez, J. Aburto, J. Mol. Catal. B 48, 90 (2007)

    Article  CAS  Google Scholar 

  10. T. Itoh, R. Ishii, T. Hanaoka, Y. Hasegawa, J. Mizuguchi, T. Shiomi, T. Shimomura, A. Yamaguchi, H. Kaneda, N. Teramae, F. Mizukami, J. Mol. Catal. B 57, 183 (2009)

    Article  CAS  Google Scholar 

  11. H. Takahashi, B.O. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Chem. Mater. 12, 3301 (2000)

    Article  CAS  Google Scholar 

  12. M.C.R. Hernández, J.E.M. Wejebe, J.C. Basurto, J.I.V. Alcántara, E.T. Rojas, J.T. Ferrara, Int. J. Biol. Macromol. 40, 444 (2007)

    Article  Google Scholar 

  13. Y. Urabe, T. Shiomi, T. Ito, A. Kawai, T. Tsunoda, F. Mizukami, K. Sakaguchi, Chem. Bio. Chem. 8, 668 (2007)

    CAS  Google Scholar 

  14. P. Reis, T. Witula, K. Holmberg, Micropor. Mesopor. Mater. 110, 355 (2007)

    Article  Google Scholar 

  15. F.M. Bautista, M.C. Bravo, D. Luna, J.M. Marinas, A.A. Romero, J. Chem. Techol. Biotechnol. 72, 249 (1998)

    Article  CAS  Google Scholar 

  16. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  17. F. Kleitz, S.H. Choi, R. Ryoo, Chem. Commun. 17, 2136 (2003)

    Article  Google Scholar 

  18. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids (Academic Press, London, 1999)

    Google Scholar 

  19. J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Micropor. Mesopor. Mater. 73, 121 (2004)

    Article  CAS  Google Scholar 

  20. F.J. Morgan, F.G. Priest, J. Appl. Bacteriol. 50, 107 (1981)

    Article  CAS  Google Scholar 

  21. P.H. Pandya, R.V. Jasra, B.L. Newalkar, P.N. Bhatt, Micropor. Mesopor. Mater. 77, 67 (2005)

    Article  CAS  Google Scholar 

  22. R. Ravindra, S. Zhao, H. Gies, R. Winter, J. Amer. Chem. Soc. 126, 12224 (2004)

    Article  CAS  Google Scholar 

  23. T. Yamamoto, T. Tanaka, T. Funabiki, S. Yoshida, J. Phys. Chem. B 102, 5830 (1998)

    Article  CAS  Google Scholar 

  24. T. Kimura, K. Kuroda, Adv. Funct. Mater. 19, 511 (2009)

    Article  CAS  Google Scholar 

  25. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Tsunoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisamatsu, K., Shiomi, T., Matsuura, Si. et al. α-Amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties. J Porous Mater 19, 95–102 (2012). https://doi.org/10.1007/s10934-011-9452-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9452-2

Keywords

Navigation