Journal of Porous Materials

, Volume 19, Issue 1, pp 95–102 | Cite as

α-Amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties

  • Kanako Hisamatsu
  • Toru Shiomi
  • Shun-ichi Matsuura
  • Takayuki Y. Nara
  • Tatsuo Tsunoda
  • Fujio Mizukami
  • Kengo Sakaguchi


α-Amylase was encapsulated in several mesoporous materials (folded sheet mesoporous silica (FSM), cubic mesoporous silica (KIT-6), and two-dimensional hexagonal mesoporous silica (SBA-15)) that differed morphologically in terms of particle shape, pore size, and pore structure. The encapsulation capacity and thermal stability of encapsulated α-amylase were examined. The amount of α-amylase encapsulated increased with increasing pore size in the following order: SBA-15 < KIT-6 < FSM. Nitrogen adsorption experiments were performed before and after α-amylase encapsulation in mesoporous silicas with pore sizes larger than the size of α-amylase, confirming that α-amylase was encapsulated in the pores. Among mesoporous silicas with similar pore sizes, FSM was found to have the highest capacity for α-amylase encapsulation both per weight and per surface area of silica. Furthermore, α-amylase encapsulated in FSM demonstrated high thermal stability at 90 °C relative to the thermal stability of free α-amylase or free α-amylase encapsulated in other mesoporous silicas. Zeta potential measurements showed that the FSM surface had an isoelectric point that was lower than that of other mesoporous silicas, and hydrophilicity measurements showed that its surface was more hydrophilic. The surface properties of FSM contributed to the high thermal stability of the α-amylase encapsulated within the pores.


Mesoporous silica Protein encapsulation Immobilized enzyme α-amylase 


  1. 1.
    W. Aehle, Enzymes in Industry: Production and Applications (Wiley-VCH, New York, 2007)Google Scholar
  2. 2.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)CrossRefGoogle Scholar
  3. 3.
    T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990)CrossRefGoogle Scholar
  4. 4.
    S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Hartmann, Chem. Mater. 17, 4577 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Takimoto, T. Shiomi, K. Ino, T. Tsunoda, A. Kawai, F. Mizukami, K. Sakaguchi, Micropor. Mesopor. Mater 116, 601 (2008)CrossRefGoogle Scholar
  7. 7.
    E.L. Pires, E.A. Miranda, G.P. Valenca, Appl. Biochem. Biotechnol. 98–100, 963 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Hudson, J. Cooney, B.K. Hodnett, E. Magner, Chem. Mater. 19, 2049 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Montiel, E. Terres, J.M. Dominguez, J. Aburto, J. Mol. Catal. B 48, 90 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Itoh, R. Ishii, T. Hanaoka, Y. Hasegawa, J. Mizuguchi, T. Shiomi, T. Shimomura, A. Yamaguchi, H. Kaneda, N. Teramae, F. Mizukami, J. Mol. Catal. B 57, 183 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Takahashi, B.O. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Chem. Mater. 12, 3301 (2000)CrossRefGoogle Scholar
  12. 12.
    M.C.R. Hernández, J.E.M. Wejebe, J.C. Basurto, J.I.V. Alcántara, E.T. Rojas, J.T. Ferrara, Int. J. Biol. Macromol. 40, 444 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Urabe, T. Shiomi, T. Ito, A. Kawai, T. Tsunoda, F. Mizukami, K. Sakaguchi, Chem. Bio. Chem. 8, 668 (2007)Google Scholar
  14. 14.
    P. Reis, T. Witula, K. Holmberg, Micropor. Mesopor. Mater. 110, 355 (2007)CrossRefGoogle Scholar
  15. 15.
    F.M. Bautista, M.C. Bravo, D. Luna, J.M. Marinas, A.A. Romero, J. Chem. Techol. Biotechnol. 72, 249 (1998)CrossRefGoogle Scholar
  16. 16.
    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)CrossRefGoogle Scholar
  17. 17.
    F. Kleitz, S.H. Choi, R. Ryoo, Chem. Commun. 17, 2136 (2003)CrossRefGoogle Scholar
  18. 18.
    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids (Academic Press, London, 1999)Google Scholar
  19. 19.
    J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Micropor. Mesopor. Mater. 73, 121 (2004)CrossRefGoogle Scholar
  20. 20.
    F.J. Morgan, F.G. Priest, J. Appl. Bacteriol. 50, 107 (1981)CrossRefGoogle Scholar
  21. 21.
    P.H. Pandya, R.V. Jasra, B.L. Newalkar, P.N. Bhatt, Micropor. Mesopor. Mater. 77, 67 (2005)CrossRefGoogle Scholar
  22. 22.
    R. Ravindra, S. Zhao, H. Gies, R. Winter, J. Amer. Chem. Soc. 126, 12224 (2004)CrossRefGoogle Scholar
  23. 23.
    T. Yamamoto, T. Tanaka, T. Funabiki, S. Yoshida, J. Phys. Chem. B 102, 5830 (1998)CrossRefGoogle Scholar
  24. 24.
    T. Kimura, K. Kuroda, Adv. Funct. Mater. 19, 511 (2009)CrossRefGoogle Scholar
  25. 25.
    R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kanako Hisamatsu
    • 1
  • Toru Shiomi
    • 2
  • Shun-ichi Matsuura
    • 2
  • Takayuki Y. Nara
    • 2
  • Tatsuo Tsunoda
    • 2
  • Fujio Mizukami
    • 2
  • Kengo Sakaguchi
    • 1
  1. 1.Department of Applied Biological ScienceTokyo University of Science, Faculty of Science and Technology, Science University of TokyoNoda, ChibaJapan
  2. 2.Research Center for Compact Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba-shi, Ibaraki-kenJapan

Personalised recommendations