Advertisement

Journal of Porous Materials

, Volume 19, Issue 1, pp 71–77 | Cite as

Mechanically stable flat anodic titania membranes for gas transport applications

  • Dmitry I. Petukhov
  • Andrei A. Eliseev
  • Irina V. Kolesnik
  • Kirill S. Napolskii
  • Alexey V. Lukashin
  • Alexey V. Garshev
  • Yuri D. Tretyakov
  • Dmitry Chernyshov
  • Wim Bras
  • Shu-Fang Chen
  • Chan-Pu Liu
Article

Abstract

Anodic titanium oxide (ATO) membranes were produced by two-step anodic oxidation of titanium foil in ethylene glycol electrolyte containing NH4F at the anodization voltage of 60 V. To provide the mechanical strength necessary for applying tubular anodic films as gas membranes, we utilized the formation of protective continuous TiO2 layer at the top film surface prior to second anodization. As compared to conventional two-step anodic oxidation this technique decreases dissolution rates of titanium oxide phases with oxidation states lower than +4 (Ti2O3, Ti3O5), which are forming between titania nanotubes during anodization. The structural parameters of anodic titania films were determined by small-angle X-ray scattering and scanning electron microscopy techniques. According to SEM the proposed method resulted in growth of ATO films with a flat surface without nanotube endings, which enabled to use the films as gas separation membranes. The permeance of individual gases through ATO membranes were found to depend on gas molecular weight (M−0.5), with absolute values twice exceeding theoretical permeabilities as it was predicted by Knudsen diffusion (up to 63 m3/(m2 × bar × h) for nitrogen at 298 K). Here we ascribe this phenomenon to diffusion according to Knudsen-Smoluchoski mechanism (diffusion with slip, involving specular reflections of molecules), which is appropriate for membranes with straight pores and smooth internal pore surfaces.

Keywords

Porous titanium oxide Anodic oxidation Anodic titania films Inorganic membranes Knudsen-Smoluchoski diffusion 

Notes

Acknowledgments

This work was supported by Russian Foundation of Basic Research (grants №№ 06-08-01443-a and 06-03-89506) and Russian Federal Agency for Science and Innovations (grant № 02.513.11.3488).

References

  1. 1.
    C. Pijolat, J.P. Viricelle, G. Tournier, P. Montmeat, Thin Solid Films 490, 7–16 (2005)CrossRefGoogle Scholar
  2. 2.
    G.A. Crawford, N. Chawla, K. Das, S. Bose, A. Bandyopadhyay, Acta Biomater. 3, 359–367 (2007)CrossRefGoogle Scholar
  3. 3.
    G. Patermarakis, N. Nicolopoulos, J. Catal. 187, 311–320 (1999)CrossRefGoogle Scholar
  4. 4.
    Y. Xian, Y. Hu, F. Liu, Y. Xian, L. Feng, L. Jin, Biosens. Bioelect. 22, 2827–2833 (2007)CrossRefGoogle Scholar
  5. 5.
    I. Eswaramoorthi, L.P. Hwang, Diam. Relat. Mater. 16, 1571–1578 (2007)CrossRefGoogle Scholar
  6. 6.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)CrossRefGoogle Scholar
  7. 7.
    K.S. Napolskii, A.A. Eliseev, N.V. Yesin, A.V. Lukashin, Yu.D. Tretyakov, N.A. Grigorieva, S.V. Grigoriev, H. Eckerlebe, Physica E 37, 178–183 (2007)Google Scholar
  8. 8.
    V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 44, 921 (1999)CrossRefGoogle Scholar
  9. 9.
    J.M. Macak, B.G. Gong, M. Hueppe, P. Schmuki, Adv. Mater. 19, 3027–3031 (2007)CrossRefGoogle Scholar
  10. 10.
    J.M. Macak, H. Tsuchiya, L. Taveria, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. 44, 7463–7465 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Tsuchiya, P. Schmuki, Electrochem. Commun. 7, 49 (2005)CrossRefGoogle Scholar
  12. 12.
    G.E. Thompson, Thin Solid Films 297, 192 (1997)CrossRefGoogle Scholar
  13. 13.
    A.G. Kontosa, A. Katsanakia, T. Maggosb, V. Likodimosa, A. Ghicovc, D. Kimc, J. Kunzec, C. Vasilakosb, P. Schmukic, P. Falaras, Chem. Phys. Lett. 490, 58–62 (2010)CrossRefGoogle Scholar
  14. 14.
    S.A.S.da Corradini, G.G. Lenzi, M.K. Lenzi, C.M.F. Soares, O.A.A. Santos, J. Non-Cryst. Solids 354, 4865–4870 (2008)CrossRefGoogle Scholar
  15. 15.
    D.I. Petukhov, A.A. Eliseev, I.V. Kolesnik, K.S. Napolskii, A.V. Lukashin, Yu.D. Tretyakov, S.V. Grigoriev, N.A. Grigorieva, H. Eckerlebe, Microporous Mesoporous Mater. 114, 440–447 (2008)Google Scholar
  16. 16.
    G. Thompson, G.C. Wood, Anodic films on aluminum: in treatise on materials science and technology Vol. 23 (Academic Press, London, 1983)Google Scholar
  17. 17.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179–16184 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, J. Phys. Chem. C 111, 14992–14997 (2007)CrossRefGoogle Scholar
  19. 19.
    S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Nano Lett. 7, 1286–1289 (2007)CrossRefGoogle Scholar
  20. 20.
    J.M. Macak, S.P. Albu, P. Schmuki, Phys. Stat. Solidi. RRL: Rapid Res. Lett. 1, 181–183 (2007)CrossRefGoogle Scholar
  21. 21.
    H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, J. Phys. Chem. C 111, 7235–7241 (2007)CrossRefGoogle Scholar
  22. 22.
    M.R. Othman, J. Kim, Microporous Mesoporous Mater. 112, 403–410 (2008)CrossRefGoogle Scholar
  23. 23.
    P.T. Cardew, M.S. Le, Membrane processes: a technology guide (Springer, New York, 1999), p. 17CrossRefGoogle Scholar
  24. 24.
    S. Roy, S.M. Cooper, M. Meyyappan, B.A. Cruden, J. Membr. Sci. 253, 209–215 (2005)CrossRefGoogle Scholar
  25. 25.
    G. Arya, H.-C. Chang, E.J. Maginn, Mol. Simul. 29, 697–709 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dmitry I. Petukhov
    • 1
  • Andrei A. Eliseev
    • 1
  • Irina V. Kolesnik
    • 1
  • Kirill S. Napolskii
    • 1
  • Alexey V. Lukashin
    • 1
  • Alexey V. Garshev
    • 1
  • Yuri D. Tretyakov
    • 1
  • Dmitry Chernyshov
    • 2
  • Wim Bras
    • 2
  • Shu-Fang Chen
    • 3
  • Chan-Pu Liu
    • 3
  1. 1.Department of Materials ScienceMoscow State UniversityMoscowRussia
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Department of Materials Science and EngineeringNational Cheng-Kung UniversityTainanTaiwan

Personalised recommendations