Journal of Porous Materials

, Volume 19, Issue 1, pp 37–44 | Cite as

Gelatin-based activated carbon with carbon nanotubes as framework for electric double-layer capacitors

  • Bin Yi
  • Xiaohua Chen
  • Bin Zeng
  • Kaimin Guo
  • Zhong Wan
  • Qi Qian
  • Haimei Yan
  • Jianghua Chen


Gelatin-based activated carbons (GBACs) were prepared by activation of novel synthetic gelatin/carbon nanotubes (CNTs) hybrid foams for 2 h at 800 °C using KOH and 1:2 component ratio. The results of scanning electron microscopy (SEM) showed that CNTs were homogenously dispersed with the form of three-dimensional framework in the gelatin matrix. Porosity development of GBACs was assessed by nitrogen adsorption at −196 °C and their capability of the charge accumulation in the electric double-layer was performed by galvanostatic, voltammetric and impedance spectroscopy techniques. GBACs with various contents of CNTs differ in terms of the total pore volume (from 0.57 to 0.98 cm3/g) and Brunauer-Emmett-Teller (BET) surface area (from 1,000 to 1,992 m2/g). Very promising specific capacitance values, ranging from 155 F/g to 262 F/g, have been found for GBACs operating in 6 mol/l KOH electrolytic solution. With a moderate content of CNTs, the specific capacitance and electronic conductivity of GBAC are substantially improved because of the combination of increased conductivity, high surface area and electrolyte accessibility of the composite electrode.


Gelatin Carbon nanotubes Activated carbon Electric double-layer capacitor 



Financial support from the National Science Foundation of China (No. 50772033, 50972043), National Science Foundation of Hunan Province, China (No. 09JJ3095), Scientific Research Fund of Hunan Province (No. 2010FJ3151) and the Science and Technology Innovative Research Team in Higher Education Institution of Hunan Province is gratefully acknowledged.


  1. 1.
    R. Kötz, M. Carlen, Eletrochim Acta. 45, 2483–2498 (2000)CrossRefGoogle Scholar
  2. 2.
    Y.Z. Wei, B. Fang, S. Iwasa, M. Kumagai, J. Power Sources 141, 386–391 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Burke, J. Power Sources 91, 37–50 (2000)CrossRefGoogle Scholar
  4. 4.
    S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc. 143, 3791–3799 (1996)CrossRefGoogle Scholar
  5. 5.
    K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, J. Electrochem. Soc. 149, A1058–A1062 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Jurewicz, S. Delpeux, V. Bertagna, F. Béguin, E. Frackowiack, Chem. Phys. Lett. 347, 36–40 (2001)CrossRefGoogle Scholar
  7. 7.
    Q. Jiang, M.Z. Qu, G.M. Zhou, B.L. Zhang, Z.L. Yu, Mater. Lett. 57, 988–991 (2002)CrossRefGoogle Scholar
  8. 8.
    R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu, J. Power Sources 84, 126–129 (1999)CrossRefGoogle Scholar
  9. 9.
    Y. Show, K. Imaizumi, Diam. Relat. Mater. 15, 2086–2089 (2006)CrossRefGoogle Scholar
  10. 10.
    C. Portet, P.L. Taberna, P. Simon, E. Flahaut, J. Power Sources 139, 371–378 (2005)CrossRefGoogle Scholar
  11. 11.
    S.B. Ross-Murphy, Polymer 33, 2622–2627 (1992)CrossRefGoogle Scholar
  12. 12.
    X.J. Yang, P.J. Zheng, Z.D. Cui, N.Q. Zhao, Y.F. Wang, K.D. Yao, Polym. Int. 44, 448–452 (1997)CrossRefGoogle Scholar
  13. 13.
    T. Takahashi, K. Tsunoda, H. Yajima, T. Ishii, Jpn. J. Appl. Phys. 43, 3636–3639 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Li, D.Q. Wang, H.L. Chen, B.L. Liu, L.Z. Gao, Macromol. Biosci. 3, 720–724 (2003)CrossRefGoogle Scholar
  15. 15.
    X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G. Zhang, Z.Z. Chen, Mater. Lett. 57, 734–738 (2002)CrossRefGoogle Scholar
  16. 16.
    Q. Jiang, Y. Zhao, Microporous Mesoporous Mater. 76, 215–219 (2004)CrossRefGoogle Scholar
  17. 17.
    P.W. Zhou, B.H. Li, F.Y. Kang, Y.Q. Zeng, New Carbon Mater 21, 125–131 (2006)Google Scholar
  18. 18.
    T.C. Weng, H. Teng, J. Electrochem. Soc. 148, A368–A373 (2001)CrossRefGoogle Scholar
  19. 19.
    W.M. Qiao, S.H. Yoon, I. Mochida, Energy Fuels 20, 1680–1684 (2006)CrossRefGoogle Scholar
  20. 20.
    W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Nature 411, 665–669 (2001)CrossRefGoogle Scholar
  21. 21.
    G.X. Wang, Z.P. Shao, Z.L. Yu, Nanotechnology 18, 205705–205710 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bin Yi
    • 1
  • Xiaohua Chen
    • 1
  • Bin Zeng
    • 1
  • Kaimin Guo
    • 2
  • Zhong Wan
    • 3
  • Qi Qian
    • 3
  • Haimei Yan
    • 1
  • Jianghua Chen
    • 1
  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Physics and Electronic ScienceChangsha University of Science and TechnologyChangshaPeople’s Republic of China
  3. 3.College of PhysicsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations