Advertisement

Journal of Porous Materials

, Volume 18, Issue 6, pp 735–742 | Cite as

Mesoporous vanadium oxide as catalyst for liquid-phase selective oxidation of diphenylmethane to benzophenone

  • You-Hsiang Yang
  • Yui Yang Wang
  • An-Nan Ko
Article

Abstract

The mesoporous vanadium oxide (MVO) was prepared from the surfactant cetyltrimethylammonium bromide along with benzyl alcohol as co-surfactant. It was found that the presence of benzyl alcohol in the synthetic mixture was essential to the formation and stability of MVO material. Characteristic mesoporous structure with uniform channel spacing as well as large surface area and pore volume of MVO sample were identified by XRD, SEM, TEM, and N2 sorption techniques. The structure of vanadium–oxygen framework was explored using FT-IR and 51V MAS NMR spectroscopy; the MVO sample possessed distorted tetrahedron structure. Results from TPR studies indicated the easier reducibility of MVO as compared to bulk V2O5. In the liquid-phase selective oxidation of diphenylmethane to benzophenone in acetic acid as solvent, the MVO catalyst exhibited remarkably better catalytic performance than bulk V2O5; at 60 °C, the conversion and benzophenone selectivity reached 39.6 and 96.7% after 1 h reaction time, with a catalyst turnover frequency of 24.2 h−1. These superior results were properly correlated to the physico-chemical properties of MVO catalyst.

Keywords

Mesoporous vanadium oxide Characterization Oxidation Diphenylmethane Benzophenone 

Notes

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China for financial support. We are grateful to Prof. K. J. Chao of National Tsing Hua University for her helpful comments and discussion.

References

  1. 1.
    S. Velu, M.P. Kapoor, S. Inagaki, K. Suzuki, Appl. Catal. A 245, 317 (2003)CrossRefGoogle Scholar
  2. 2.
    M.P. Kapoor, Y. Ichihashi, K. Kuraoka, Y. Matsumura, J. Mol. Catal. A 198, 303 (2003)CrossRefGoogle Scholar
  3. 3.
    D.M. Antonelli, A. Nakahira, J.Y. Ying, Inorg. Chem. 35, 3126 (1996)CrossRefGoogle Scholar
  4. 4.
    P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396, 152 (1998)CrossRefGoogle Scholar
  5. 5.
    Z. Tian, W. Tong, J. Wang, N. Duan, V.V. Krishnan, S.L. Suib, Science 276, 926 (1997)CrossRefGoogle Scholar
  6. 6.
    A. Mitra, A. Bhaumik, B.K. Paul, Micro. Meso. Mater. 109, 66 (2008)CrossRefGoogle Scholar
  7. 7.
    V. Luca, D.J. MacLachlan, J.M. Hook, R. Withers, Chem. Mater. 7, 2220 (1995)CrossRefGoogle Scholar
  8. 8.
    P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11, 2813 (1999)CrossRefGoogle Scholar
  9. 9.
    P. Liu, I.L. Moudrakovski, J. Liu, A. Sayari, Chem. Mater. 9, 2513 (1997)CrossRefGoogle Scholar
  10. 10.
    J.A. Horsely, CHEMTECH. 45 (1997)Google Scholar
  11. 11.
    G.A. Olah, Friedel–Crafts and Related Reactions (Wiley-Interscience, New York, 1963)Google Scholar
  12. 12.
    C.F. Cullis, J.W. Ladbury, J. Chem. Soc. 2850 (1955)Google Scholar
  13. 13.
    J.H. Clark, A.P. Kybett, P. London, D.J. Macquarrie, K. Martin, J. Chem. Soc. Chem. Commun. 18, 1355 (1989)CrossRefGoogle Scholar
  14. 14.
    S.K. Jana, Y. Kubota, T. Tatsumi, J. Catal. 247, 214 (2007)CrossRefGoogle Scholar
  15. 15.
    L. Tang, B. Li, Z. Zhai, J. Li, E. Ou, J. Wang, Catal. Lett. 121, 63 (2008)CrossRefGoogle Scholar
  16. 16.
    D. Kishore, A.E. Rodrigues, Catal. Commun. 10, 1212 (2009)CrossRefGoogle Scholar
  17. 17.
    V. Caps, S.C. Tsang, Catal. Today 61, 19 (2000)CrossRefGoogle Scholar
  18. 18.
    V.R. Choudhary, J.R. Indurkar, V.S. Narkhede, R. Jha, J. Catal. 227, 257 (2004)CrossRefGoogle Scholar
  19. 19.
    R.K. Jha, S. Shylesh, S.S. Bhoware, A.P. Singh, Micro. Meso. Mater. 95, 154 (2006)CrossRefGoogle Scholar
  20. 20.
    S.S. Bhoware, K.R. Kamble, A.P. Singh, Catal. Lett. 133, 106 (2009)CrossRefGoogle Scholar
  21. 21.
    S.-Y. Chin, F.-J. Lin, A.-N. Ko, Catal. Lett. 132, 389 (2009)CrossRefGoogle Scholar
  22. 22.
    W.G. Menezes, D.M. Reis, T.M. Benedetti, M.M. Oliveira, J.F. Soares, R.M. Torresi, A.J.G. Zarbin, J. Colloid Interf. Sci. 337, 586 (2009)CrossRefGoogle Scholar
  23. 23.
    Z.F. Li, E. Ruckenstein, Langmuir 18, 6956 (2002)CrossRefGoogle Scholar
  24. 24.
    H.-N. Cui, V. Teixeira, L.-J. Meng, R. Wang, J.-Y. Gao, E. Fortunato, Thin Solid Films 516, 1484 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Siew Hew Sam, V. Soenen, J.C. Volta, J. Catal. 123, 417 (1990)CrossRefGoogle Scholar
  26. 26.
    R. Frech, X. Zhang, Electrochim. Acta 42, 475 (1997)CrossRefGoogle Scholar
  27. 27.
    V. Luca, J.M. Hook, Chem. Mater. 9, 2731 (1997)CrossRefGoogle Scholar
  28. 28.
    L. Balderas–Tapia, J.A. Wang, I. Hernández–Pérez, G.G. Aguilar–Ríos, P. Schacht, Mater. Lett. 58, 3034 (2004)CrossRefGoogle Scholar
  29. 29.
    H. Berndt, A. Martin, A. Brückner, E. Schreier, D. Müller, H. Kosslick, G.–.U. Wolf, B. Lücke, J. Catal. 141, 384 (2000)CrossRefGoogle Scholar
  30. 30.
    I.E. Wachs, Y. Chen, J.–.M. Jehng, L.E. Briand, T. Tanaka, Catal. Today 78, 13 (2003)CrossRefGoogle Scholar
  31. 31.
    T. Sooknoi, J. Limtrakul, Appl. Catal. A 233, 227 (2002)CrossRefGoogle Scholar
  32. 32.
    T. Sato, J. Dakka, R. Sheldon, J. Chem. Soc. Chem. Commun. 16, 1887 (1994)CrossRefGoogle Scholar
  33. 33.
    F. Chang, W. Li, F. Xia, Z. Yan, J. Xiong, J. Wang, Chem. Lett. 34, 1540 (2005)CrossRefGoogle Scholar
  34. 34.
    W. Yao, Y. Chen, L. Min, H. Fang, Z. Yan, J. Wang, J. Mol. Catal. A Chem. 246, 162 (2005)CrossRefGoogle Scholar
  35. 35.
    E.A. Mamedov, V.C. Corberan, Appl. Catal. A 127, 1 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryTunghai UniversityTaichungTaiwan

Personalised recommendations