Advertisement

Journal of Porous Materials

, Volume 18, Issue 4, pp 435–441 | Cite as

Porous TiO2 nanostructures synthesized from peroxotitanic acid-derived anatase

  • W. Q. Peng
  • Y.-J. Liu
  • M. Aizawa
  • Z.-M. Wang
  • H. Hatori
  • T. Hirotsu
Article

Abstract

Titania/titanate nanotubes and nanoplates were prepared by an alkali hydrothermal method using the powder and the sol of peroxotitanic acid-derived anatase, respectively, as precursors. XRD patterns and Raman spectra showed that both nanotubes and nanoplates are of titanate structure with the latter involving a slight part of anatase phase. These nanotubes and nanoplates are highly mesoporous based on nitrogen adsorption measurement. After calcination at 823 K, nanotubes were transformed into nanorods, and nanoplates into spherical particles, both of which are pure anatase-type titania. The nanorod material exhibits an enhanced photocatalytic activity in comparison with the spherical particles.

Graphical Abstract

FE-SEM images of nanotubes (left) and nanoplates (right) prepared using the powder and the sol of peroxotitanic acid-derived anatase as precursors, respectively.

Keywords

Nanostructures TiO2 Precursors Photocatalysis 

References

  1. 1.
    R.Z. Ma, T. Sasaki, Y. Bando, J. Am. Chem. Soc. 126, 10382 (2004)CrossRefGoogle Scholar
  2. 2.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)CrossRefGoogle Scholar
  3. 3.
    X.S. Fang, L.D. Zhang, J. Mater. Sci. Tech. 22, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Jiu, S. Isoda, F. Wang, M. Adachi, J. Phys. Chem. B 110, 2087 (2006)CrossRefGoogle Scholar
  5. 5.
    K. Aslan, J.R. Lakowicz, C.D. Geddes, J. Phys. Chem. B. 109, 6247 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Umek, R.C. Korosec, B. Jancar, R. Dominko, D. Arcon, J. Nanosci. Nanotech. 7, 3502 (2007)CrossRefGoogle Scholar
  7. 7.
    Y.B. Li, Y. Bando, D. Golberg, Appl. Phys. Lett. 82, 1962 (2003)CrossRefGoogle Scholar
  8. 8.
    C.H. Lin, S.H. Chien, J.H. Chao, C.Y. Sheu, Y.C. Cheng, Y.J. Huang, C.H. Tsai, Catal. Lett. 80, 153 (2002)CrossRefGoogle Scholar
  9. 9.
    M.A. Khan, H.T. Jung, O.B. Yang, J. Phys. Chem. B 110, 6626 (2006)CrossRefGoogle Scholar
  10. 10.
    O.K. Varghese, D.W. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 624 (2003)CrossRefGoogle Scholar
  11. 11.
    C.K. Lee, S.S. Liu, L.C. Juang, C.C. Wang, M.D. Lyu, S.H. Hung, J. Hazardous Mater. 148, 756 (2007)CrossRefGoogle Scholar
  12. 12.
    X.G. Xu, X. Ding, Q. Chen, L.M. Peng, Phys. Rev. B 75, 035423 (2007)CrossRefGoogle Scholar
  13. 13.
    X.M. Sun, Y.D. Li, Chem. Euro. J. 9, 2229 (2003)CrossRefGoogle Scholar
  14. 14.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999)CrossRefGoogle Scholar
  15. 15.
    R.Z. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380, 577 (2003)CrossRefGoogle Scholar
  16. 16.
    C.K. Lee, C.C. Wang, M.D. Lyu, L.C. Juang, S.S. Liu, S.H. Hung, J. Colloid Interface Sci. 316, 562 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Ichinose, M. Terasaki, H. Katsuki, J. Ceram. Soc. Jpn. 104, 715 (1996)Google Scholar
  18. 18.
    H. Ichinose, H. Katsuki, J. Ceram. Soc. Jpn. 106, 344 (1998)Google Scholar
  19. 19.
    S.I. Seok, B.Y. Ahn, N.C. Pramanik, H. Kim, S.I. Hong, J. Am. Ceram. Soc. 89, 1147 (2006)CrossRefGoogle Scholar
  20. 20.
    L. Ge, M.X. Xu, M. Sun, Mater. Lett. 60, 287 (2006)CrossRefGoogle Scholar
  21. 21.
    Y.J. Liu, M. Aizawa, W.Q. Peng, Z.M. Wang, H. Hatori, N. Uekawa, H. Kanoh, Chem. Lett. 36, 1094 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Yada, Y. Goto, M. Uota, T. Torikai, T. Watari, J. Eur. Ceram. Soc. 26, 673 (2006)CrossRefGoogle Scholar
  23. 23.
    D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)CrossRefGoogle Scholar
  24. 24.
    X.S. Peng, A.C. Chen, Adv. Funct. Mater. 16, 1355 (2006)CrossRefGoogle Scholar
  25. 25.
    P.P. Lottici, D. Bersani, M. Braghini, A. Montenero, J. Mater. Sci. 28, 177 (1993)CrossRefGoogle Scholar
  26. 26.
    S. Papp, L. Korosi, V. Meynen, P. Cool, E.F. Vansant, I. Dekany, J. Solid State Chem. 178, 1614 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Zhang, L.M. Peng, Q. Chen, G.H. Du, G. Dawson, W.Z. Zhou, Phys. Rev. Lett. 91, 256103 (2003)CrossRefGoogle Scholar
  28. 28.
    D. Seo, J. Lee, H. Kim, J. Cryst. Growth 229, 428 (2001)CrossRefGoogle Scholar
  29. 29.
    Y.J. Liu, M. Aizawa, Z.M. Wang, H. Hatori, N. Uekawa, H. Kanoh, J. Colloid Interface Sci. 322, 497 (2008)CrossRefGoogle Scholar
  30. 30.
    S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, 2nd edn. (Academic Press, London, 1982)Google Scholar
  31. 31.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Sieminiewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  32. 32.
    J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol, A. Catal, Chem. 249, 135 (2006)Google Scholar
  33. 33.
    H. Kominami, T. Matsuura, K. Iwai, B. Ohtani, S. Nishimoto, Y. Kera, Chem. Lett. 24, 693 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Energy Technology Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.Health Technology Research CenterNational Institute of Advanced Industrial Science and TechnologyTakamatsu-shiJapan

Personalised recommendations