Journal of Porous Materials

, Volume 18, Issue 2, pp 147–157 | Cite as

Propylsulfonic acid-functionalized partially crystalline silicalite-1 materials: synthesis and characterization

  • Yin Fong Yeong
  • Ahmad Zuhairi Abdullah
  • Abdul Latif Ahmad
  • Subhash Bhatia


Propylsulfonic acid-functionalized partially crystalline silicalite-1 materials were synthesized via one step co-condensation technique by varying the molar ratio of organosilane source, 3-mercaptopropyltrimethoxysilane (3MP) to tetraethylorthosilicate (TEOS) in the range of 0.05–0.30, and subsequent oxidation of thiol group to propylsulfonic acid using hydrogen peroxide (H2O2). These materials were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and nitrogen adsorption–desorption method. The structure of these materials was determined by Fourier transform infrared spectroscopy (FT-IR) and 29Si and 13C solid state NMR. XRD results show that % crystallinity of the materials decreased with the increase in 3MP concentration in the synthesis mixture. Selected area electron diffraction (SAED) showed the presence of crystalline and amorphous phases in the samples. An amorphous phase was formed when 3MP concentration was 30 mol% of the total silica source. After elimination of the structure directing agent (SDA) by calcination at 420 °C, thermogravimetric analysis (TGA) shows that the structure was thermally stable up to 550 °C. Ammonia temperature-programmed desorption (NH3-TPD) shows that the acid capacity of these materials was in the range of 1.19–1.83 mmol H+/g, which shows that these materials could be used as potential heterogeneous acid catalyst.


Synthesis Characterization Propylsulfonic acid-functionalized Partially crystalline silicalite-1 3-mercaptopropyltrimethoxysilane Oxidation Characterization 



The financial support provided by Ministry of Science, Technology and Environment under e-Science Fund Grant (Account No: 6013319), Ministry of Higher Education under FRGS (Account No: 6070021) and Research University Grant (Account No: 811043) are duly acknowledged.


  1. 1.
    A. Corma, J. Catal. 216, 298 (2003)CrossRefGoogle Scholar
  2. 2.
    C.P. Nicolaides, N.P. Sincadu, M.S. Scurrell, Catal. Today 71, 429 (2002)CrossRefGoogle Scholar
  3. 3.
    C.P. Nicolaides, Appl. Catal A: Gen. 185, 211 (1999)CrossRefGoogle Scholar
  4. 4.
    R. Van Grieken, J.L. Sotelo, J.M. Menendez, J.A. Melero, Micropor. Mesopor. Mater. 39, 135 (2000)CrossRefGoogle Scholar
  5. 5.
    K.S. Triantafyllidis, L. Nalbandian, P.N. Trikalitis, A.K. Ladavos, T. Mavromoustakos, C.P. Nicolaides, Micropor. Mesopor. Mater. 75, 89 (2004)CrossRefGoogle Scholar
  6. 6.
    A.S.M. Chong, X.S. Zhaoa, A.T. Kustedjo, S.Z. Qiao, Micropor. Mesopor. Mater. 72, 33 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Wang, J.C.C. Chan, Y.H. Tseng, S. Cheng, Micropor. Mesopor. Mater. 95, 57 (2006)CrossRefGoogle Scholar
  8. 8.
    X. Wang, S. Cheng, J.C.C. Chan, J.C.H. Chao, Micropor. Mesopor. Mater. 96, 321 (2006)CrossRefGoogle Scholar
  9. 9.
    W. Zhang, X. Bao, X. Guo, X. Wang, Catal. Lett. 60, 89 (1999)CrossRefGoogle Scholar
  10. 10.
    Z. Zhu, Z. Xie, Q. Chen, D. Kong, W. Li, W. Yang, C. Li, Micropor. Mesopor. Mater. 101, 169 (2007)CrossRefGoogle Scholar
  11. 11.
    J.H. Kim, T. Kunieda, M. Niwa, J. Catal. 173, 433 (1998)CrossRefGoogle Scholar
  12. 12.
    M.A. Camblor, A. Corma, S. Valencia, Micropor. Mesopor. Mater. 25, 59 (1998)CrossRefGoogle Scholar
  13. 13.
    S.C. Larsen, J. Phys. Chem. C 111, 18464 (2007)CrossRefGoogle Scholar
  14. 14.
    D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez, A. Peral, Chem. Mater. 18, 2462 (2006)CrossRefGoogle Scholar
  15. 15.
    J.C. Groen, J.A. Moulijn, J. Pe′rez-Ramı′rez, Micropor. Mesopor. Mater. 87, 153 (2005)CrossRefGoogle Scholar
  16. 16.
    P. Borges, R.R. Pinto, M.A.N.D.A. Lemosa, F. Lemos, J.C. V′edrinec, E.G. Derouaned, F. Ramˆoa Ribeiro, J Mol Catal A: Chem. 229, 127–128 (2005)CrossRefGoogle Scholar
  17. 17.
    A.K. Aboul-Gheit, S.M. Abdel-Hamid, E.A. Emam, Appl. Catal. A: Gen. 179, 107 (1999)CrossRefGoogle Scholar
  18. 18.
    S. Faramawy, S.M. El-Sabagh, N.Y. Al-Mehbad, React. Kinet. Catal. Lett. 66, 257 (1999)CrossRefGoogle Scholar
  19. 19.
    C.P. Nicolaides, H.H. Kung, N.P. Makgobaa, N.P. Sincadu, M.S. Scurrell, Appl. Catal. A: Gen. 223, 29 (2002)CrossRefGoogle Scholar
  20. 20.
    C.W. Jones, K. Tsuji, M.E. Davis, Micropor. Mesopor. Mater. 33, 223 (1999)CrossRefGoogle Scholar
  21. 21.
    C.W. Jones, M. Tsapatsis, O. Tatsuya, M.E. Davis, Micropor. Mesopor. Mater. 42, 21 (2001)CrossRefGoogle Scholar
  22. 22.
    K. Tsuji, C.W. Jones, M.E. Davis, Micropor. Mesopor. Mater. 29, 339 (1999)CrossRefGoogle Scholar
  23. 23.
    B.L. Su, M. Roussel, K. Vause, X.Y. Yang, F. Gilles, L. Shi, E. Leonova, M. Eden, X. Zou, Micropor. Mesopor. Mater. 105, 49 (2007)CrossRefGoogle Scholar
  24. 24.
    Z. Lai, M. Tsapatsis, J.P. Nicolich, Adv. Funct. Mater. 14, 716 (2004)CrossRefGoogle Scholar
  25. 25.
    C.W. Jones, Science 300, 439 (2003)CrossRefGoogle Scholar
  26. 26.
    J. Guo, A.J. Han, H. Yu, J.P. Dong, H. He, Y.C. Long, Micropor. Mesopor. Mater. 94, 166 (2006)CrossRefGoogle Scholar
  27. 27.
    I.K. Mbaraka, D.R. Radu, S.Y. Lin, B.H. Shanks, J. Catal. 219, 329 (2003)CrossRefGoogle Scholar
  28. 28.
    Y. Zheng, X. Su, X. Zhang, W. Wei, Y. Sun, Stud. Surf. Sci. Catal. 156, 205 (2005)CrossRefGoogle Scholar
  29. 29.
    Y.F. Yeong, A.Z. Abdullah, A.L. Ahmad, S. Bhatia, Micropor. Mesopor. Mater. 123, 129 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Tanaka, C. Yuan, Y. Miyake, Micropor. Mesopor. Mater. 113, 418 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, Z. Gao, J. Mater. Chem. 12, 1812 (2002)CrossRefGoogle Scholar
  32. 32.
    X. Wang, S. Cheng, J.C.C. Chan, J. Phys. Chem. C 111, 2156 (2007)CrossRefGoogle Scholar
  33. 33.
    Y. Luo, P. Yang, J. Lin, Micropor. Mesopor. Mater. 111, 194 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Xing, Y. Liu, Y. Wang, L. Chen, H. Wu, Y. Jiang, M. He, P. Wu, Micropor. Mesopor. Mater. 105, 41 (2007)CrossRefGoogle Scholar
  35. 35.
    X. Zhang, Y. Wu, S. He, D. Yang, Surf. Coat. Technol. 201, 6051 (2007)CrossRefGoogle Scholar
  36. 36.
    D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Chem. Mater. 12, 2448 (2000)CrossRefGoogle Scholar
  37. 37.
    B.A. Holmberg, S.J. Hwang, M.E. Davis, Y. Yan, Micropor. Mesopor. Mater. 80, 347 (2005)CrossRefGoogle Scholar
  38. 38.
    G. Yang, J. He, Y. Yoneyama, Y. Tan, Y. Han, N. Tsubaki, Appl. Catal. A: Gen. 329, 99 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Shylesh, S. Sharma, S.P. Mirajkar, A.P. Singh, J. Mol. A. Catal. Chem. 212, 219 (2004)CrossRefGoogle Scholar
  40. 40.
    Y.H. Chou, C.S. Cundy, A.A. Garforth, V.L. Zholobenko, Micropor. Mesopor. Mater. 89, 78 (2006)CrossRefGoogle Scholar
  41. 41.
    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids Principles, Methodology and Applications (Elsevier, Amsterdam, 1999), p. 355CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yin Fong Yeong
    • 1
  • Ahmad Zuhairi Abdullah
    • 1
  • Abdul Latif Ahmad
    • 1
  • Subhash Bhatia
    • 1
  1. 1.School of Chemical Engineering, Engineering CampusUniversiti Sains MalaysiaNibong Tebal, Seberang Perai SelatanMalaysia

Personalised recommendations