Journal of Porous Materials

, Volume 17, Issue 5, pp 589–595 | Cite as

CO2 retention ability on alkali cation exchanged titanium silicate, ETS-10

  • S. W. Park
  • Y. H. Yun
  • S. D. Kim
  • S. T. Yang
  • W. S. Ahn
  • G. Seo
  • W. J. Kim


ETS-10 was ion exchanged by various alkali cations (Li+, Na+, K+, Rb+ and Cs+) and the BET surface area and pore volume was exactly consistent with cationic size; that is, in the order of Li+ > Na+ > K+ > Rb+ > Cs+. It was observed that a single point adsorption capacity was inversely proportional to cationic size. The largest CO2 capacity was observed for Li+-ETS-10 and it is attributed to greater cation–quadrupole interactions with CO2 than larger cation. The results also suggests that as the CO2 loading is increased, the accessibility of adsorbing CO2 to framework basic O sites should have become difficult with the increase in cationic size due to the blocking effect by extra-framework CO2-M+. The slight decrease in the slope of adsorption capacity with temperature, especially beyond 373 K for Li+-ETS-10 and K+-ETS-10 suggests that the adsorption of CO2 on small alkali cation exchanged-ETS-10 at high temperature is somewhat associated with basic oxygen anion sites in framework due to the existence of large pore. The CO2-TPD results show that the amount of desorbed CO2 at higher temperature was proportionally increased due to the increased basicity of oxygen anions in framework. It also shows that the desorption temperature associated with alkali cations in extra-framework (corresponding to low temperature desorption peak) has been lowered with the increase in cationic size, indicating weak cation–quadrupole interactions with CO2 for larger cations.


M+-ETS-10 Cation–quadrupole interaction Basicity Blocking effect Cationic size 



This work was supported by the Carbon Dioxide Reduction & Sequestration R&D Center (CDRS), one of the 21st Century Frontier R&D Programs in Korea.


  1. 1.
    H. Van Bekkum, E.M. Flanigen, P.A. Jacobs, J. Jansen, Introduction to Zeolites Science and Practice. Studies in Surface Science and Catalysis, vol. 137 (Elsevier, 2001)Google Scholar
  2. 2.
    R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Energy Fuels 15, 279 (2001)CrossRefGoogle Scholar
  3. 3.
    R. Kikuchi, Energy Environ. 14, 383 (2003)CrossRefGoogle Scholar
  4. 4.
    E. Diaz, E. Munoz, A. Vega, S. Ordonez, Ind. Eng. Chem. Res. 47, 412 (2008)CrossRefGoogle Scholar
  5. 5.
    J. Davison, K. Thanbimuth, in Proceedings of the 7th International Conference on Greenhouse, Gas Control Technologies, vol. 1, Vancouver, Canada, ed. by E.S. Rubin, D.W. Keith, C.F. Gilboy (Elsevier, 2004)Google Scholar
  6. 6.
    H.H. Khoo, R.B.H. Tan, Environ. Sci. Technol. 40, 4116 (2006)CrossRefGoogle Scholar
  7. 7.
    X.C. Xu, C. Song, J.M. Andersen, B.G. Miller, A.W. Scaroni, Microporous Mesoporous Mater. 62, 29 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Przepiorski, M. Skrodzewicz, A.W. Morawski, Appl. Surf. Sci. 225, 235 (2004)CrossRefGoogle Scholar
  9. 9.
    K.B. Lee, A. Verdooren, H.S. Caram, S. Sicar, J. Colloid Interface Sci. 308, 30 (2007)CrossRefGoogle Scholar
  10. 10.
    H.K. Song, K.H. Lee, Sep. Sci. Technol. 33, 13–2039 (1998)Google Scholar
  11. 11.
    Z. Yong, V. Mata, A.E. Rodrigues, Adsorption 7(1), 41 (2001)CrossRefGoogle Scholar
  12. 12.
    V.P. Shiralkar, S.B. Kulkarni, Zeolites 4, 329 (1984)CrossRefGoogle Scholar
  13. 13.
    V.P. Shiralkar, S.B. Kulkarni, Zeolites 5, 37 (1985)CrossRefGoogle Scholar
  14. 14.
    D. Amari, J.M. Lopez Cuesta, N.P. Nguyen, R. Jerrentrup, J.L. Ginoux, J. Therm. Anal. 38, 1005 (1992)CrossRefGoogle Scholar
  15. 15.
    P.N. Joshi, V.P. Shiralkar, J. Phys. Chem. 97, 619 (1993)CrossRefGoogle Scholar
  16. 16.
    J.A. Dunne, M. Rao, S. Sicar, R.J. Gorte, A.L. Myers, Langmuir 12, 5896 (1996)CrossRefGoogle Scholar
  17. 17.
    D. Shen, M. Bulow, Microporous Mesoporous Mater. 22, 237 (1998)CrossRefGoogle Scholar
  18. 18.
    Z.M. Wang, T. Arai, M. Kumagi, Energy Fuels 12, 1055 (1998)CrossRefGoogle Scholar
  19. 19.
    Y. Zou, A.E. Rodrigues, Adsorpt. Sci. Technol. 19, 255 (2001)CrossRefGoogle Scholar
  20. 20.
    A.L. Pulin, A.A. Fomkin, V.A. Sinitsyn, A.A. Pribylov, Russ. Chem. Bull. Int. Ed. 50, 60 (2001)CrossRefGoogle Scholar
  21. 21.
    J.S. Lee, J.H. Km, J.T. Suh, J.M. Lee, C.H. Lee, J. Chem. Eng. Data 47, 1237 (2002)CrossRefGoogle Scholar
  22. 22.
    R.V. Siriwardane, M.S. Shen, E.P. Fisher, Energy Fuels 17, 571 (2003)CrossRefGoogle Scholar
  23. 23.
    K.S. Walton, M.B. Abney, M.D. Levan, Microporous Mesoporous Mater. 91, 78 (2006)CrossRefGoogle Scholar
  24. 24.
    O. Talu, S.Y. Zhang, D.T. Hayhurst, J. Phys. Chem. 97, 12894 (1993)CrossRefGoogle Scholar
  25. 25.
    D. Barthomeuf, Microporous Mesoporous Mater. 66, 1 (2003)CrossRefGoogle Scholar
  26. 26.
    D. Barthomeuf, J. Phys. Chem. 88, 42 (1984)CrossRefGoogle Scholar
  27. 27.
    B.S. Waghmode, R. Vetrivel, S.G. Hegde, C.S. Gopinath, S. Sivasanker, J. Phys. Chem. B 107, 8517 (2003)CrossRefGoogle Scholar
  28. 28.
    S.H. Noh, S.D. Kim, Y.J. Jung, J.W. Park, D.K. Moon, D.T. Hayhurst, W.J. Kim, Microporous Mesoporous Mater. 88, 197 (2006)CrossRefGoogle Scholar
  29. 29.
    P.D. Jadhav, R.V. Chatti, R.B. Biniwale, N.K. Labhsetwar, S. Devotta, S.S. Rayalu, Energy Fuels 21, 3555 (2007)CrossRefGoogle Scholar
  30. 30.
    B. Bonelli, B. Civaller, B. Fubini, P. Ugliengo, C.O. Arean, E. Garrone, J. Phys. Chem. B 104, 10978 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. W. Park
    • 1
  • Y. H. Yun
    • 1
  • S. D. Kim
    • 1
  • S. T. Yang
    • 2
  • W. S. Ahn
    • 2
  • G. Seo
    • 3
  • W. J. Kim
    • 1
  1. 1.Department of Materials Chemistry and Engineering, Engineering CollegeKon Kuk UniversitySeoulSouth Korea
  2. 2.Department of Chemical Engineering, College of EngineeringInha UniversityInchonSouth Korea
  3. 3.Department of Applied Chemical Engineering, College of EngineeringJonNam National UniversityKwang JuSouth Korea

Personalised recommendations