Journal of Porous Materials

, Volume 17, Issue 5, pp 573–581 | Cite as

Synthesis and structural characterization of iron-modified folded sheet mesoporous materials

  • K. Bachari
  • A. Touileb
  • A. Saadi
  • D. Halliche
  • O. Cherifi


Fe-FSM-16 materials with different Si/Fe ratios (Si/Fe = 100, 50, 10) have been synthesized by intercalating kanemite using cetyltrimethylammonium bromide (CTMABr) as the intercalating agent and iron nitrate as the iron source, and characterized by several spectroscopic techniques. Electrons spin resonance and Mössbauer spectroscopies, along with electron microscopy and X-ray diffraction, allowed differentiation of several iron species. These species correspond to (1) hematite particles, (2) very small “isolated” or oligomeric FeIII species possibly incorporated in the mesoporous silica wall, and (3) FeIII oxide clusters either isolated or agglomerated, forming “rafts” at the surface of the silica and exhibiting ferromagnetic ordering. Because of their agglomeration, these clusters appear with a two-peak size distribution, with one peak corresponding to the isolated clusters formed in the mesopores and still embedded in them and the other corresponding to the agglomerates spread on the surface of the mesoporous silica particles.


Mesoporous Fe-FSM-16 materials Kanemite Nanosized iron oxide Mössbauer spectroscopy ESR spectroscopy 


  1. 1.
    T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990)CrossRefGoogle Scholar
  2. 2.
    S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc. Chem. Commun. 680 (1993)Google Scholar
  3. 3.
    K. Kuroda, J. Porous. Mater. 3, 107 (1996)CrossRefGoogle Scholar
  4. 4.
    Y. Sakamoto, S. Inagaki, T. Ohsuna, N. Ohnishi, Y. Fukushima, Y. Nozue, O. Terasaki, Microporous Mesoporous Mater. 21, 589 (1998)CrossRefGoogle Scholar
  5. 5.
    C.-Y. Chen, S.-Q. Xiao, M.E. Davis, Microporous Mater. 4, 1 (1995)CrossRefGoogle Scholar
  6. 6.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)CrossRefGoogle Scholar
  7. 7.
    S. O’Brien, R.J. Francis, A. Fogg, D. O’Hare, N. Okazaki, K. Kuroda, Chem. Mater. 11, 1822 (1999)CrossRefGoogle Scholar
  8. 8.
    W. Li, Y. Yao, Z. Wang, J. Zhao, M. Zhao, C. Sun, Mater. Chem. Phys. 70, 144 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Kimura, D. Itoh, N. Okazaki, M. Kaneda, Y. Sakamoto, O. Tereasaki, Y. Sugahara, K. Kuroda, Langmuir 16, 7624 (2000)CrossRefGoogle Scholar
  10. 10.
    T. Kimura, T. Kamata, M. Fuziwara, Y. Takano, M. Kaneda, Y. Sakamoto, O. Terasaki, Y. Sugahara, K. Kuroda, Angew. Chem. Int. Ed. 39, 3855 (2000)Google Scholar
  11. 11.
    H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Microporous Mesoporous Mater. 44–45, 755 (2001)CrossRefGoogle Scholar
  12. 12.
    H. Chen, A. Matsumoto, N. Nishimiya, K. Tsutsumi, Chem. Lett. 993 (1999)Google Scholar
  13. 13.
    H. Chen, A. Matsumoto, N. Nishimiya, T. Takeichi, K. Tsutsumi, Microporous Mesoporous Mater. 40, 289 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Ogawa, K. Kuroda, T. Nakamura, Microporous Mesoporous Mater. 48, 159 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Ogawa, K. Kuroda, T. Nakamura, Chem. Lett. 632 (2002)Google Scholar
  16. 16.
    K. Fujishima, A. Fukuoka, A. Yamagishi, S. Inagaki, Y. Fukushima, M. Ichikawa, J. Mol. Catal. A 166, 211 (2001)CrossRefGoogle Scholar
  17. 17.
    A. Fukuoka, K. Fujishima, M. Chiba, A. Yamagishi, S. Inagaki, Y. Fukushima, M. Ichikawa, Catal. Lett. 68, 241 (2000)CrossRefGoogle Scholar
  18. 18.
    H. Yoshida, K. Kimura, Y. Inaki, T. Hattori, Chem. Commun. 129 (1997)Google Scholar
  19. 19.
    Y. Inaki, H. Yoshida, K. Kimura, S. Inagaki, Y. Fukushima, T. Hattori, Phys. Chem. Chem. Phys. 2, 5293 (2000)CrossRefGoogle Scholar
  20. 20.
    D. Shouro, Y. Ohya, S. Mishima, T. Nakajima, Appl. Catal. A 214, 59 (2001)CrossRefGoogle Scholar
  21. 21.
    A. Fukuoka, N. Higashimoto, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Microporous Mesoporous Mater. 48, 171 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Fukuoka, N. Higashimoto, Y. Sakamoto, M. Sasaki, N. Sugimoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Catal. Today 66, 23 (2001)CrossRefGoogle Scholar
  23. 23.
    T. Yamamoto, T. Tanaka, T. Funabiki, S. Yoshida, J. Phys.Chem. B 102, 5830 (1998)CrossRefGoogle Scholar
  24. 24.
    T. Yamamoto, T. Tanaka, S. Inagaki, T. Funabiki, S. Yoshida, J. Phys. Chem. B 103, 6450 (1999)CrossRefGoogle Scholar
  25. 25.
    H. Matsuhashi, M. Tanaka, H. Nakamura, K. Arata, Appl. Catal. A 208, 1 (2001)CrossRefGoogle Scholar
  26. 26.
    J.K.A. Dapaah, Y. Uemichi, A. Ayame, H. Matsuhashi, M. Sugioka, Appl. Catal. A 187, 107 (1999)CrossRefGoogle Scholar
  27. 27.
    O.C. Kistner, A.W. Sunyar, Phys. Rev. Lett. 4, 412 (1960)CrossRefGoogle Scholar
  28. 28.
    L. Néel, Ann. Geophys. 5, 99 (1949)Google Scholar
  29. 29.
    S. Mørup, J.A. Dumesic, H. Topsøe, in Applications of Mössbauer Spectroscopy, vol. II, ed. by R.L. Cohen (Academic Press, New York, 1980)Google Scholar
  30. 30.
    J.M.M. Millet, H. Knözinger, P. Bonville, J. Phys. Chem. B 110, 16003 (2006)CrossRefGoogle Scholar
  31. 31.
    J.M.M. Millet, M. Signoretto, P. Bonville, Catal. Lett. 64, 135 (2000)CrossRefGoogle Scholar
  32. 32.
    R. Aasa, J. Chem. Phys. 52, 3919 (1983)CrossRefGoogle Scholar
  33. 33.
    D. Golfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994)CrossRefGoogle Scholar
  34. 34.
    P. Selvam, S.E. Dapurkar, S.K. Badamali, M. Murugasan, H. Kuwano, Catal. Today 68, 69 (2001)CrossRefGoogle Scholar
  35. 35.
    K. Arata, I. Oyoshima, Chem. Lett. 929 (1974)Google Scholar
  36. 36.
    K. Arata, K. Yabe, I. Oyoshima, J. Catal. 44, 385 (1976)CrossRefGoogle Scholar
  37. 37.
    X. Carrier, P. Lukinskas, S. Kuba, L. Stievano, F. Wagner, M. Che, H. Knözinger, Chem. Phys. Chem. 5, 1191 (2004)Google Scholar
  38. 38.
    D.H. Lin, G. Coudurier, J.C. Vedrine, Stud. Surf. Sci. Catal. 49, 1431 (1989)CrossRefGoogle Scholar
  39. 39.
    S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchnina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)CrossRefGoogle Scholar
  40. 40.
    J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogues, F. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Jolivet, J. Magn. Magn. Mater. 187, 139 (1998)CrossRefGoogle Scholar
  41. 41.
    M.F. Hansen, S. Morup, J. Magn. Magn. Mater. 184, 262 (1998)CrossRefGoogle Scholar
  42. 42.
    M.A. Polikarpov, I.V. Trushin, S.S. Yakimov, J. Magn. Magn. Mater. 116, 372 (1992)CrossRefGoogle Scholar
  43. 43.
    S. Morup, E. Tronc, Phys. Rev. Lett. 72, 3278 (1994)CrossRefGoogle Scholar
  44. 44.
    K. Koike, T. Furukawa, Phys. Rev. Lett. 77, 3921 (1996)CrossRefGoogle Scholar
  45. 45.
    F. Schmidt, T. Meeder, Surf. Sci. 106, 397 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. Bachari
    • 1
  • A. Touileb
    • 1
  • A. Saadi
    • 2
  • D. Halliche
    • 2
  • O. Cherifi
    • 2
  1. 1.Centre de recherche scientifique et technique en analyses physico-chimiques (C.R.AP.C)BP 248, Alger RPAlgerAlgérie
  2. 2.Laboratoire de Chimie du Gaz Naturel, Faculté de ChimieAlgerAlgérie

Personalised recommendations