Skip to main content
Log in

Gemini surfactant controlled preparation of well-ordered lamellar mesoporous molybdenum oxide

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A series of well-ordered lamellar mesoporous molybdenum oxides were prepared using gemini surfactant [C n H2n+1N+(CH3)2–(CH2)2–N+(CH3)2C n H2n+1] · 2Br(denoted as C n-2-n , n = 12, 14 and 16) as the structure-directing agent and ammonium heptamolybdate tetrahydrate (NH4)6Mo7O24 · 4H2O as the precursor. The obtained samples were characterized by X-ray powder diffraction, thermal analysis, transmission electron microscopy and nitrogen adsorption–desorption. Results showed that contrary to complete structure collapse after removing tetradecyltrimethylammonium bromide (TTAB) from molybdenum oxide/TTAB composite, the lamellar mesostructure was retained after removal of C n-2-n from corresponding composite. The effects of alkyl chain length and concentration of gemini surfactants on the structure of the mesoporous molybdenum oxide were also investigated. The specific surface area of extracted sample was as high as 116 m2 g−1. The maintenance of the lamellar mesostruture was due to the strong self-assembly ability of gemini surfactants and the strong electrical interaction between gemini surfactants and molybdenum oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992). doi:10.1038/359710a0

    Article  CAS  Google Scholar 

  2. Q.S. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schüth, G.D. Stucky, Chem. Mater. 6, 1176 (1994). doi:10.1021/cm00044a016

    Article  CAS  Google Scholar 

  3. A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky, B.F. Chmelka, Science 267, 1138 (1995). doi:10.1126/science.7855591

    Article  CAS  Google Scholar 

  4. D. Walsh, S. Mann, Nature 377, 320 (1995). doi:10.1038/377320a0

    Article  CAS  Google Scholar 

  5. H. Yang, N. Coombs, G.A. Ozin, Nature 386, 692 (1997). doi:10.1038/386692a0

    Article  CAS  Google Scholar 

  6. J.M. Kim, Y. Sakamoto, Y.K. Hwang, Y.U. Kwon, O. Terasaki, S.E. Park, G.D. Stucky, J. Phys. Chem. B 106, 2552 (2002). doi:10.1021/jp014280w

    Article  CAS  Google Scholar 

  7. Q.S. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Science 268, 1324 (1995). doi:10.1126/science.268.5215.1324

    Article  CAS  Google Scholar 

  8. X.Y. Yang, S.B. Zhang, Z.M. Qiu, G. Tian, Y.F. Feng, F.S. Xiao, J. Phy, Chem. Br. 108, 4696 (2004)

    CAS  Google Scholar 

  9. S. Che, A.E. Garcia-Bennett, T. Yokol, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2, 801 (2003). doi:10.1038/nmat1022

    Article  CAS  Google Scholar 

  10. C. Rodriguez-Abreu, T. Izawa, K. Aramaki, A. Lopez-Quintela, K. Sakamoto, H. Kunieda, J. Phys. Chem. B 108, 20083 (2004). doi:10.1021/jp0467245

    Article  CAS  Google Scholar 

  11. D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998). doi:10.1021/ja974025i

    Article  CAS  Google Scholar 

  12. D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998). doi:10.1126/science.279.5350.548

    Article  CAS  Google Scholar 

  13. J. Fan, C.Z. Yu, F. Gao, J. Lei, B.Z. Tian, L.M. Wang, Q. Luo, B. Tu, W.Z. Zhou, D.Y. Zhao, Angew. Chem. Int. Ed. 42, 3146 (2003). doi:10.1002/anie.200351027

    Article  CAS  Google Scholar 

  14. X. He, D.M. Antonelli, Angew. Chem. Int. Ed. 41, 214 (2002). doi:10.1002/1521-3773(20020118)41:2<214::AID-ANIE214>3.0.CO;2-D

    Article  CAS  Google Scholar 

  15. Y. Liu, Y. Qian, M. Zhang, Z. Chen, C. Wang, Mater. Res. Bull. 31, 1029 (1996). doi:10.1016/S0025-5408(96)00082-7

    Article  CAS  Google Scholar 

  16. Z. Hussain, J. Mater. Res. 16, 2695 (2001). doi:10.1557/JMR.2001.0369

    Article  CAS  Google Scholar 

  17. H.C. Zeng, Inorg. Chem. 37, 1967 (1998). doi:10.1021/ic971269v

    Article  CAS  Google Scholar 

  18. P. Gall, P. Gougeon, J. Solid State Chem. 181, 1 (2008). doi:10.1016/j.jssc.2007.10.024

    Article  CAS  Google Scholar 

  19. U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. Stucky, J. Chem. Soc. Chem. Commun. 1387 (1994). doi: 10.1039/c39940001387

  20. R.Q. Song, A.W. Xu, B. Deng, Y.P. Fang, J. Phys. Chem. B 109, 22758 (2005). doi:10.1021/jp0533325

    Article  CAS  Google Scholar 

  21. T. Liu, Y. Xie, B. Chu, Langmuir 16, 9015 (2000). doi:10.1021/la000282g

    Article  CAS  Google Scholar 

  22. J. Chen, C. Burger, C.V. Krishnan, B. Chu, J. Am. Chem. Soc. 27, 14140 (2005)

    Article  Google Scholar 

  23. G.G. Janauer, A. Dobley, J. Guo, P. Zavalij, M.S. Whittingham, Chem. Mater. 8, 2096 (1996). doi:10.1021/cm960111q

    Article  CAS  Google Scholar 

  24. Y.Y. Lyu, S.H. Yi, J.K. Shon, S. Chang, L.S. Pu, S.Y. Lee, J.E. Yie, K. Char, G.D. Stucky, J.M. Kim, J. Am. Chem. Soc. 126, 2310 (2004). doi:10.1021/ja0390348

    Article  CAS  Google Scholar 

  25. M.S. Whittingham, J.D. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, Solid State Ion. 75, 257 (1995). doi:10.1016/0167-2738(94)00220-M

    Article  CAS  Google Scholar 

  26. M. Niederberger, F. Krumeich, H. Muhr, M. Müller, R. Nesper, J. Mater. Chem. 11, 1941 (2001). doi:10.1039/b101311o

    Article  CAS  Google Scholar 

  27. D.M. Antonelli, M. Trudeau, Angew. Chem. Int. Ed. 38, 1471 (1999). doi:10.1002/(SICI)1521-3773(19990517)38:10<1471::AID-ANIE1471>3.0.CO;2-R

    Article  CAS  Google Scholar 

  28. A. Gabashvili, G.A. Seisenbaeva, V.G. Kessler, L. Zhang, J.C. Yu, A. Gedanken, J. Mater. Chem. 13, 2851 (2003). doi:10.1039/b309925c

    Article  CAS  Google Scholar 

  29. R. Zana, J. Colloid Interface Sci. 252, 259 (2002). doi:10.1006/jcis.2002.8457

    Article  CAS  Google Scholar 

  30. E. Alami, G. Beinert, P. Marie, R. Zana, Langmuir 9, 1465 (1993). doi:10.1021/la00030a006

    Article  CAS  Google Scholar 

  31. T. Lu, F. Han, G. Mao, G. Lin, J. Huang, X. Huang, Y. Wang, H. Fu, Langmuir 23, 2932 (2007). doi:10.1021/la063435u

    Article  CAS  Google Scholar 

  32. M. Widenmeyer, R. Anwander, Chem. Mater. 14, 1827 (2002). doi:10.1021/cm011273b

    Article  CAS  Google Scholar 

  33. P. Van Der Voort, M. Mathieu, F. Mees, E.F. Vansant, J. Phys. Chem. B 102, 8847 (1998). doi:10.1021/jp982653w

    Article  Google Scholar 

  34. O. Collart, P. Van Der Voort, E.F. Vansant, D. Desplantier, A. Galarneau, F. Di Renzo, F. Fajula, J. Phys. Chem. B 105, 12771 (2001). doi:10.1021/jp013037u

    Article  CAS  Google Scholar 

  35. S. Han, J. Xu, W. Hou, X. Yu, Y. Wang, J. Phys. Chem. B 108, 15043 (2004). doi:10.1021/jp0477093

    Article  CAS  Google Scholar 

  36. S. Han, J. Xu, W. Hou, X. Huang, L. Zheng, Chem. Phys. Chem. 7, 394 (2006). doi:10.1002/cphc.200500271

    CAS  Google Scholar 

  37. X. Yu, Z. Xu, S. Han, H. Che, X. Yan, Colloids Surf. A 333, 194 (2009). doi:10.1016/j.colsurfa.2008.09.048

    Article  CAS  Google Scholar 

  38. K. Esumi, M. Goino, Y. Koide, J. Colloid Interface Sci. 183, 539 (1996). doi:10.1006/jcis.1996.0577

    Article  CAS  Google Scholar 

  39. R. Zana, M. Benrraou, R. Rueff, Langmuir 7, 1072 (1991). doi:10.1021/la00054a008

    Article  CAS  Google Scholar 

  40. R. Zana, H. Lévy, Colloids Surf. A 127, 229 (1997). doi:10.1016/S0927-7757(97)00142-8

    Article  CAS  Google Scholar 

  41. L.V. Bogutskaya, S.V. Khalameida, V.A. Zazhigalov, A.I. Kharlamov, L.V. Lyashenko, O.G. Byl, Theor. Exp. Chem. 35, 242 (1999). doi:10.1007/BF02511524

    Article  CAS  Google Scholar 

  42. H. Hirata, N. Hattori, M. Ishida, M. Okabayashi, M. Frusaka, R. Zana, J. Phys. Chem. B 99, 17778 (1995). doi:10.1021/j100050a017

    Article  CAS  Google Scholar 

  43. D.H. Everett, Pure Appi. Chem. 31, 578 (1972)

    Google Scholar 

  44. P.T. Tanev, T.J. Pinnavaia, Chem. Mater. 8, 2068 (1996). doi:10.1021/cm950549a

    Article  CAS  Google Scholar 

  45. X. Wang, W. Hou, X. Guo, Q. Yan, Chem. Lett. 29, 52 (2000). doi:10.1246/cl.2000.52

    Article  Google Scholar 

  46. L.F. Nazar, S.W. Liblong, X.T. Yin, J. Am. Chem. Soc. 113, 5889 (1991). doi:10.1021/ja00015a068

    Article  CAS  Google Scholar 

  47. R.F. Nalewajski, A. Michalak, J. Phys. Chem. A 102, 636 (1998). doi:10.1021/jp972566o

    Article  CAS  Google Scholar 

  48. X.L. Yin, H.M. Han, A. Miyamoto, J. Mol. Model. 7, 207 (2001)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Key Project Foundation of the Ministry of Education of China (No. 105104), the Natural Science Foundation of China (No. 50572057), the Middle-aged and Youthful Excellent Scientist Encouragement Foundation of Shandong (No. 2005BS1-1003), and the Natural Science Foundation of Shandong Province (No. Z2006B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Xu, Z. & Han, S. Gemini surfactant controlled preparation of well-ordered lamellar mesoporous molybdenum oxide. J Porous Mater 17, 99–105 (2010). https://doi.org/10.1007/s10934-009-9269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9269-4

Keywords

Navigation