Advertisement

Journal of Porous Materials

, 17:99 | Cite as

Gemini surfactant controlled preparation of well-ordered lamellar mesoporous molybdenum oxide

  • Xiaojuan Yu
  • Zhenghe Xu
  • Shuhua Han
Article

Abstract

A series of well-ordered lamellar mesoporous molybdenum oxides were prepared using gemini surfactant [C n H2n+1N+(CH3)2–(CH2)2–N+(CH3)2C n H2n+1] · 2Br(denoted as C n-2-n , n = 12, 14 and 16) as the structure-directing agent and ammonium heptamolybdate tetrahydrate (NH4)6Mo7O24 · 4H2O as the precursor. The obtained samples were characterized by X-ray powder diffraction, thermal analysis, transmission electron microscopy and nitrogen adsorption–desorption. Results showed that contrary to complete structure collapse after removing tetradecyltrimethylammonium bromide (TTAB) from molybdenum oxide/TTAB composite, the lamellar mesostructure was retained after removal of C n-2-n from corresponding composite. The effects of alkyl chain length and concentration of gemini surfactants on the structure of the mesoporous molybdenum oxide were also investigated. The specific surface area of extracted sample was as high as 116 m2 g−1. The maintenance of the lamellar mesostruture was due to the strong self-assembly ability of gemini surfactants and the strong electrical interaction between gemini surfactants and molybdenum oxide.

Keywords

Molybdenum oxides Gemini surfactants Lamellar mesopores 

Notes

Acknowledgements

This research was financially supported by the Key Project Foundation of the Ministry of Education of China (No. 105104), the Natural Science Foundation of China (No. 50572057), the Middle-aged and Youthful Excellent Scientist Encouragement Foundation of Shandong (No. 2005BS1-1003), and the Natural Science Foundation of Shandong Province (No. Z2006B02).

References

  1. 1.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992). doi: 10.1038/359710a0 CrossRefGoogle Scholar
  2. 2.
    Q.S. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schüth, G.D. Stucky, Chem. Mater. 6, 1176 (1994). doi: 10.1021/cm00044a016 CrossRefGoogle Scholar
  3. 3.
    A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky, B.F. Chmelka, Science 267, 1138 (1995). doi: 10.1126/science.7855591 CrossRefGoogle Scholar
  4. 4.
    D. Walsh, S. Mann, Nature 377, 320 (1995). doi: 10.1038/377320a0 CrossRefGoogle Scholar
  5. 5.
    H. Yang, N. Coombs, G.A. Ozin, Nature 386, 692 (1997). doi: 10.1038/386692a0 CrossRefGoogle Scholar
  6. 6.
    J.M. Kim, Y. Sakamoto, Y.K. Hwang, Y.U. Kwon, O. Terasaki, S.E. Park, G.D. Stucky, J. Phys. Chem. B 106, 2552 (2002). doi: 10.1021/jp014280w CrossRefGoogle Scholar
  7. 7.
    Q.S. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Science 268, 1324 (1995). doi: 10.1126/science.268.5215.1324 CrossRefGoogle Scholar
  8. 8.
    X.Y. Yang, S.B. Zhang, Z.M. Qiu, G. Tian, Y.F. Feng, F.S. Xiao, J. Phy, Chem. Br. 108, 4696 (2004)Google Scholar
  9. 9.
    S. Che, A.E. Garcia-Bennett, T. Yokol, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2, 801 (2003). doi: 10.1038/nmat1022 CrossRefGoogle Scholar
  10. 10.
    C. Rodriguez-Abreu, T. Izawa, K. Aramaki, A. Lopez-Quintela, K. Sakamoto, H. Kunieda, J. Phys. Chem. B 108, 20083 (2004). doi: 10.1021/jp0467245 CrossRefGoogle Scholar
  11. 11.
    D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998). doi: 10.1021/ja974025i CrossRefGoogle Scholar
  12. 12.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998). doi: 10.1126/science.279.5350.548 CrossRefGoogle Scholar
  13. 13.
    J. Fan, C.Z. Yu, F. Gao, J. Lei, B.Z. Tian, L.M. Wang, Q. Luo, B. Tu, W.Z. Zhou, D.Y. Zhao, Angew. Chem. Int. Ed. 42, 3146 (2003). doi: 10.1002/anie.200351027 CrossRefGoogle Scholar
  14. 14.
    X. He, D.M. Antonelli, Angew. Chem. Int. Ed. 41, 214 (2002). doi: 10.1002/1521-3773(20020118)41:2<214::AID-ANIE214>3.0.CO;2-D CrossRefGoogle Scholar
  15. 15.
    Y. Liu, Y. Qian, M. Zhang, Z. Chen, C. Wang, Mater. Res. Bull. 31, 1029 (1996). doi: 10.1016/S0025-5408(96)00082-7 CrossRefGoogle Scholar
  16. 16.
    Z. Hussain, J. Mater. Res. 16, 2695 (2001). doi: 10.1557/JMR.2001.0369 CrossRefGoogle Scholar
  17. 17.
    H.C. Zeng, Inorg. Chem. 37, 1967 (1998). doi: 10.1021/ic971269v CrossRefGoogle Scholar
  18. 18.
    P. Gall, P. Gougeon, J. Solid State Chem. 181, 1 (2008). doi: 10.1016/j.jssc.2007.10.024 CrossRefGoogle Scholar
  19. 19.
    U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. Stucky, J. Chem. Soc. Chem. Commun. 1387 (1994). doi:  10.1039/c39940001387
  20. 20.
    R.Q. Song, A.W. Xu, B. Deng, Y.P. Fang, J. Phys. Chem. B 109, 22758 (2005). doi: 10.1021/jp0533325 CrossRefGoogle Scholar
  21. 21.
    T. Liu, Y. Xie, B. Chu, Langmuir 16, 9015 (2000). doi: 10.1021/la000282g CrossRefGoogle Scholar
  22. 22.
    J. Chen, C. Burger, C.V. Krishnan, B. Chu, J. Am. Chem. Soc. 27, 14140 (2005)CrossRefGoogle Scholar
  23. 23.
    G.G. Janauer, A. Dobley, J. Guo, P. Zavalij, M.S. Whittingham, Chem. Mater. 8, 2096 (1996). doi: 10.1021/cm960111q CrossRefGoogle Scholar
  24. 24.
    Y.Y. Lyu, S.H. Yi, J.K. Shon, S. Chang, L.S. Pu, S.Y. Lee, J.E. Yie, K. Char, G.D. Stucky, J.M. Kim, J. Am. Chem. Soc. 126, 2310 (2004). doi: 10.1021/ja0390348 CrossRefGoogle Scholar
  25. 25.
    M.S. Whittingham, J.D. Guo, R. Chen, T. Chirayil, G. Janauer, P. Zavalij, Solid State Ion. 75, 257 (1995). doi: 10.1016/0167-2738(94)00220-M CrossRefGoogle Scholar
  26. 26.
    M. Niederberger, F. Krumeich, H. Muhr, M. Müller, R. Nesper, J. Mater. Chem. 11, 1941 (2001). doi: 10.1039/b101311o CrossRefGoogle Scholar
  27. 27.
    D.M. Antonelli, M. Trudeau, Angew. Chem. Int. Ed. 38, 1471 (1999). doi: 10.1002/(SICI)1521-3773(19990517)38:10<1471::AID-ANIE1471>3.0.CO;2-R CrossRefGoogle Scholar
  28. 28.
    A. Gabashvili, G.A. Seisenbaeva, V.G. Kessler, L. Zhang, J.C. Yu, A. Gedanken, J. Mater. Chem. 13, 2851 (2003). doi: 10.1039/b309925c CrossRefGoogle Scholar
  29. 29.
    R. Zana, J. Colloid Interface Sci. 252, 259 (2002). doi: 10.1006/jcis.2002.8457 CrossRefGoogle Scholar
  30. 30.
    E. Alami, G. Beinert, P. Marie, R. Zana, Langmuir 9, 1465 (1993). doi: 10.1021/la00030a006 CrossRefGoogle Scholar
  31. 31.
    T. Lu, F. Han, G. Mao, G. Lin, J. Huang, X. Huang, Y. Wang, H. Fu, Langmuir 23, 2932 (2007). doi: 10.1021/la063435u CrossRefGoogle Scholar
  32. 32.
    M. Widenmeyer, R. Anwander, Chem. Mater. 14, 1827 (2002). doi: 10.1021/cm011273b CrossRefGoogle Scholar
  33. 33.
    P. Van Der Voort, M. Mathieu, F. Mees, E.F. Vansant, J. Phys. Chem. B 102, 8847 (1998). doi: 10.1021/jp982653w CrossRefGoogle Scholar
  34. 34.
    O. Collart, P. Van Der Voort, E.F. Vansant, D. Desplantier, A. Galarneau, F. Di Renzo, F. Fajula, J. Phys. Chem. B 105, 12771 (2001). doi: 10.1021/jp013037u CrossRefGoogle Scholar
  35. 35.
    S. Han, J. Xu, W. Hou, X. Yu, Y. Wang, J. Phys. Chem. B 108, 15043 (2004). doi: 10.1021/jp0477093 CrossRefGoogle Scholar
  36. 36.
    S. Han, J. Xu, W. Hou, X. Huang, L. Zheng, Chem. Phys. Chem. 7, 394 (2006). doi: 10.1002/cphc.200500271 Google Scholar
  37. 37.
    X. Yu, Z. Xu, S. Han, H. Che, X. Yan, Colloids Surf. A 333, 194 (2009). doi: 10.1016/j.colsurfa.2008.09.048 CrossRefGoogle Scholar
  38. 38.
    K. Esumi, M. Goino, Y. Koide, J. Colloid Interface Sci. 183, 539 (1996). doi: 10.1006/jcis.1996.0577 CrossRefGoogle Scholar
  39. 39.
    R. Zana, M. Benrraou, R. Rueff, Langmuir 7, 1072 (1991). doi: 10.1021/la00054a008 CrossRefGoogle Scholar
  40. 40.
    R. Zana, H. Lévy, Colloids Surf. A 127, 229 (1997). doi: 10.1016/S0927-7757(97)00142-8 CrossRefGoogle Scholar
  41. 41.
    L.V. Bogutskaya, S.V. Khalameida, V.A. Zazhigalov, A.I. Kharlamov, L.V. Lyashenko, O.G. Byl, Theor. Exp. Chem. 35, 242 (1999). doi: 10.1007/BF02511524 CrossRefGoogle Scholar
  42. 42.
    H. Hirata, N. Hattori, M. Ishida, M. Okabayashi, M. Frusaka, R. Zana, J. Phys. Chem. B 99, 17778 (1995). doi: 10.1021/j100050a017 CrossRefGoogle Scholar
  43. 43.
    D.H. Everett, Pure Appi. Chem. 31, 578 (1972)Google Scholar
  44. 44.
    P.T. Tanev, T.J. Pinnavaia, Chem. Mater. 8, 2068 (1996). doi: 10.1021/cm950549a CrossRefGoogle Scholar
  45. 45.
    X. Wang, W. Hou, X. Guo, Q. Yan, Chem. Lett. 29, 52 (2000). doi: 10.1246/cl.2000.52 CrossRefGoogle Scholar
  46. 46.
    L.F. Nazar, S.W. Liblong, X.T. Yin, J. Am. Chem. Soc. 113, 5889 (1991). doi: 10.1021/ja00015a068 CrossRefGoogle Scholar
  47. 47.
    R.F. Nalewajski, A. Michalak, J. Phys. Chem. A 102, 636 (1998). doi: 10.1021/jp972566o CrossRefGoogle Scholar
  48. 48.
    X.L. Yin, H.M. Han, A. Miyamoto, J. Mol. Model. 7, 207 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Key Lab of Colloid and Interface Chemistry (Shandong University) Ministry of EducationShandong UniversityJinanPeople’s Republic of China
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations