Journal of Porous Materials

, 17:91 | Cite as

Differences between the isostructural IRMOF-1 and MOCP-L porous adsorbents

  • Guillermo Calleja
  • Juan A. Botas
  • M. Gisela Orcajo
  • Manuel Sánchez-Sánchez


Several discrepancies have emerged about the preparation methods of MOF-5 material, one of the adsorbents more studied for hydrogen storage, because different synthesis procedures give rise to apparently isostructural materials but actually having very different textural properties and also showing different hydrogen adsorption capacities. In this work, MOF-5 material has been successfully synthesized according to the two most extended methods, and the respective resulting materials, IRMOF-1 and MOCP-L, have been widely characterized. Powder X-ray diffraction confirmed that MOF-5 is the main crystallized phase obtained in both cases, and that the MOCP-L product contains some ZnO impurities, mainly in the form of segregated crystals that appear preferentially outside the micropores. The presence of ZnO in the MOCP-L material has been also confirmed by other characterization techniques. On the other hand, interpenetrated networks in the MOCP-L material are not significant, appearing in any case at a similar extent than in IRMOF-1; consequently it cannot be considered for explaining the differences observed in the adsorption capacity of both materials. These differences cannot be completely explained simply by the segregated ZnO impurities, so the presence of some ZnO nanocrystals partially blocking the micropores of MOCP-L must be admitted.


Metal-organic frameworks IRMOF-1 MOCP-L Hydrogen adsorption ZnO impurities 



Authors acknowledge CICYT (Project ENE2006-06244) for financial support of this research work. MSS and MGO acknowledge Spanish Ministry of Science and Innovation for a Ramon-y-Cajal contract and a FPU contract, respectively.


  1. 1.
    H. Li, M. Eddaoudi, M. O’ Keeffee, O.M. Yaghi, Nature 402, 276 (1999). doi: 10.1038/46248 CrossRefGoogle Scholar
  2. 2.
    L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, Y. Yan, Microp. Mesop. Mater. 58, 105 (2003). doi: 10.1016/S1387-1811(02)00609-1 CrossRefGoogle Scholar
  3. 3.
    S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.-P. Lillerud, M. Bjorgenb, A. Zecchina, Chem. Commun. (Camb) 2300 (2004). doi: 10.1039/b407246d
  4. 4.
    B. Panella, M. Hirscher, Adv. Mater. 17, 538 (2005). doi: 10.1002/adma.200400946 CrossRefGoogle Scholar
  5. 5.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Science 295, 469 (2002). doi: 10.1126/science.1067208 CrossRefGoogle Scholar
  6. 6.
    J.-S. Choi, W.-J. Son, J.-H. Kim, W.-S. Ahn, Microp. Mesop. Mater. 116, 727 (2008). doi: 10.1016/j.micromeso.2008.04.033 CrossRefGoogle Scholar
  7. 7.
    J. Rowsell, A. Millward, K. Park, O.M. Yaghi, J. Am. Chem. Soc. 126, 5666 (2004). doi: 10.1021/ja049408c CrossRefGoogle Scholar
  8. 8.
    A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, J. Am. Chem. Soc. 128, 3494 (2006). doi: 10.1021/ja058213h CrossRefGoogle Scholar
  9. 9.
    G. Calleja, D.P. Serrano, J.A. Botas, M. Sánchez-Sánchez, M.G. Orcajo, J.C. de la Torre, in International Symposium on Materials Issues in Hydrogen Production and Storage. The University of California at Santa Barbara, Santa Barbara, USA, 20–25 August, 2006)Google Scholar
  10. 10.
    J. Hafizovic, M. Bjørgen, U. Olsbye, D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, J. Am. Chem. Soc. 129, 3612 (2007). doi: 10.1021/ja0675447 CrossRefGoogle Scholar
  11. 11.
    S. Kaye, A. Dailly, O.M. Yaghi, J. Long, J. Am. Chem. Soc. 129, 14176 (2007). doi: 10.1021/ja076877g CrossRefGoogle Scholar
  12. 12.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16, 626 (2006). doi: 10.1039/b511962f CrossRefGoogle Scholar
  13. 13.
    J. Gonzalez, R.N. Devi, D.P. Tunstall, P.A. Cox, P.A. Wright, Microp. Mesop. Mater. 84, 97 (2005). doi: 10.1016/j.micromeso.2005.04.019 CrossRefGoogle Scholar
  14. 14.
    J. Kim, H. Li, L.N. Rosi, O.M. Yaghi, M. Eddaoudi, Patent US2003004364, 2003Google Scholar
  15. 15.
    J. Rowsell, E. Spencer, J. Eckert, J. Howard, O.M. Yaghi, Science 309, 1350 (2005). doi: 10.1126/science.1113247 CrossRefGoogle Scholar
  16. 16.
    J. Rowsell, J. Eckert, O.M. Yaghi, J. Am. Chem. Soc. 127, 14904 (2005). doi: 10.1021/ja0542690 CrossRefGoogle Scholar
  17. 17.
    J. Rowsell, O.M. Yaghi, J. Am. Chem. Soc. 128, 1304 (2006). doi: 10.1021/ja056639q CrossRefGoogle Scholar
  18. 18.
    D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Tetrahedron 64, 8553 (2008). doi: 10.1016/j.tet.2008.06.036 CrossRefGoogle Scholar
  19. 19.
    W.-J. Son, J. Kim, J. Kim, W.-S. Ahn, Chem. Commun. (Camb) 6336 (2008). doi: 10.1039/b814740j
  20. 20.
    S. Opelt, S. Turk, E. Dietzsch, A. Henschel, S. Kaskel, E. Klemm, Catal. Commun. 9, 1286 (2008). doi: 10.1016/j.catcom.2007.11.019 CrossRefGoogle Scholar
  21. 21.
    B.E.P. Beeston, R.W. Horne, R. Markham, in Electron Diffraction and Optical Diffraction Techniques, ed. by Audrey M. Glauert (Amsterdam, 1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Guillermo Calleja
    • 1
  • Juan A. Botas
    • 1
  • M. Gisela Orcajo
    • 1
  • Manuel Sánchez-Sánchez
    • 1
  1. 1.Department of Chemical and Environmental TechnologyUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations