Journal of Porous Materials

, Volume 17, Issue 1, pp 39–47 | Cite as

Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites

  • Alias Mohd Yusof
  • Nik Ahmad Nizam
  • Noor Aini Abd Rashid


The faujasite-type of zeolites (NaX and NaY) and NaA-type of zeolite were synthesized from rice husk ash (RHA) via the hydrothermal conditions. The combustion of rice husk at controlled temperature of 600 °C for an hour in open air produce more than 90% of amorphous silica in the ash which was reactive towards the synthesis of zeolites. The formation of zeolite NaY from RHA is metastable and thus, the seeding and ageing effects in the synthesis of zeolite NaY were investigated to avoid the formation of zeolite A or P as the impurities in zeolite NaY. Zeolites NaX and NaA were also successfully synthesized with high purity, absence of impurities and other phases, and high reproducibility. Thus, the amorphous forms of silica in RHA can be used as a source of silica for the synthesis of faujasite-types and NaA-type of zeolites.


Rice husk ash Zeolite NaY Seeding technique Zeolite NaX Zeolite NaA 



The authors would like to send our gratitude to Ministry of Science, Technology and Innovation (MOSTI) for the financial support and all of the members from the Department of Chemistry, Faculty Science and from Faculty of Bioscience and Bioengineering, Universiti Teknologi Malaysia in assisting this research.


  1. 1.
    T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.Y. Thomas Choong, Desalination 175, 305 (2005). doi: 10.1016/j.desal.2004.10.014 CrossRefGoogle Scholar
  2. 2.
    K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Chemosphere 50, 23 (2003). doi: 10.1016/S0045-6535(02)00598-2 CrossRefGoogle Scholar
  3. 3.
    N. Yalcin, V. Serinc, Ceram. Int. 27, 219 (2001). doi: 10.1016/S0272-8842(00)00068-7 CrossRefGoogle Scholar
  4. 4.
    A. Jain, T.R. Rao, S.S. Sambi, P.D. Grover, Biomass Bioenergy 7, 285–289 (1994). doi: 10.1016/0961-9534(94)00070-A Google Scholar
  5. 5.
    R.K. Vempati, US patent No. US 6,444,186 B1, 2002Google Scholar
  6. 6.
    P.K. Bajpai, M.S. Rao, Ind. Eng. Chem. Prod. Res. Dev. 20, 721 (1981). doi: 10.1021/i300004a026 CrossRefGoogle Scholar
  7. 7.
    A.K. Dalal, M.S. Rao, Ind. Eng. Chem. Prod. Res. Dev. 24, 465 (1985). doi: 10.1021/i300019a026 CrossRefGoogle Scholar
  8. 8.
    H. Hamdan, Y.A. Keat, Malaysian Patent No. PI 9802741, 1993Google Scholar
  9. 9.
    D.I. Petkowicz, R.T. Rigo, C. Radtke, S.B. Pergher, J.H.Z. dos Santos, Microporous Mesoporous Mater. (2008). doi: 10.1016/j.micromeso.2008.05.014 (in press)
  10. 10.
    R.K. Vempati, R. Borade, R.S. Hegde, S. Komarneni, Microporous Mesoporous Mater. 93, 134 (2006). doi: 10.1016/j.micromeso.2006.02.008 CrossRefGoogle Scholar
  11. 11.
    H. Hamdan, M.N.M. Muhid, S. Endud, E. Listiorini, Z. Ramli, J. Non-Cryst. Solids 211, 126 (1997). doi: 10.1016/S0022-3093(96)00611-4 CrossRefGoogle Scholar
  12. 12.
    D.W. Breck, J. Chem. Educ. 4, 678 (1964)CrossRefGoogle Scholar
  13. 13.
    N.R.C.F. Machado, D.M.M. Miotto, Fuel 84, 2289 (2005). doi: 10.1016/j.fuel.2005.05.003 CrossRefGoogle Scholar
  14. 14.
    D. Wu, B. Zhang, L. Yan, H. Kong, X. Wang, Int. J. Miner. Process. 80, 266 (2006). doi: 10.1016/j.minpro.2006.05.005 CrossRefGoogle Scholar
  15. 15.
    R.M. Milton, US patent No. 2,882,243, 1959Google Scholar
  16. 16.
    R.M. Milton, US patent No. 2,882,244, 1959Google Scholar
  17. 17.
    Breck DW, Tonawanda NY US Patent No. 3,130,007, 1964Google Scholar
  18. 18.
    N.Y. Chen, T.F. Degnan Jr, Smith CM Molecular Transport and Reaction in Zeolites: Design and Application of Shape Selective Catalysts (VCH publisher, New York, 1994), pp. 8–47Google Scholar
  19. 19.
    R. Szostak, Handbook of Molecular Sieves (Van Nostrand Reinhold, New York, 1992), pp. 285–286Google Scholar
  20. 20.
    J.D. Sherman, Proc. Natl. Acad. Sci. USA 96, 3471 (1999). doi: 10.1073/pnas.96.7.3471 CrossRefGoogle Scholar
  21. 21.
    H.V. Bekkum, J. Cejka, A. Corma, F. Schueth (eds.), Introduction to Zeolite Molecular Sieve (Elsevier, Amsterdam, 2007)Google Scholar
  22. 22.
    L.B. Sand, F.A. Mumpton (eds.), Natural Zeolites: Occurrence, Properties and Use (Pergamon, Tucson, 1978)Google Scholar
  23. 23.
    G. Socrates, Infrared Characteristics Group Frequencies: Tables and Charts (Wiley, New York, 1994)Google Scholar
  24. 24.
    H.A. Willis, J.H. der Mas, R.G.J. Miller, Laboratory Methods in Vibrational Spectroscopy (Wiley, New York, 1987)Google Scholar
  25. 25.
    X.S. Zhao, G.Q. Lu, H.Y. Zhu, J. Porous Mater. 4, 245 (1997). doi: 10.1023/A:1009669104923 CrossRefGoogle Scholar
  26. 26.
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974)Google Scholar
  27. 27.
    D.W. Breck, Recent Advance in Zeolite Science (American chemical society, Washington, 1971), pp. 1–19Google Scholar
  28. 28.
    D.M. Ginter, A.T. Bell, C.J. Radke, Zeolites 12, 742 (1992). doi: 10.1016/0144-2449(92)90126-A CrossRefGoogle Scholar
  29. 29.
    E.M. Flanigen, H. Khatami, H.A. Szymenski, in Molecular Sieve Zeolites I, Advances in Chemistry Series, vol. 101, ed. by E.M. Flanigen, L.B. Sand (American Chemical Society, Washington, 1971), pp. 201–228CrossRefGoogle Scholar
  30. 30.
    E.M. Flanigen, Structural analysis by infrared spectroscopy, in Zeolite Chemistry and Catalysis, ACS Monograph, vol. 171, ed. by J.A. Rabo (American Chemical Society, Washington, 1976), pp. 80–180Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alias Mohd Yusof
    • 1
  • Nik Ahmad Nizam
    • 2
  • Noor Aini Abd Rashid
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Faculty of Biosciences and BioengineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations