Journal of Porous Materials

, 16:737 | Cite as

Surface free energies and steam stability of methyl-modified silica membranes



Methyl-modified silica membranes have been prepared by acid-catalyzed co-hydrolysis and condensation reactions of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES). The surface wettability, micro-structure and gas permeance of the methyl-modified silica membranes were investigated. The values of dispersion force γ S d , dipole force γ S P and hydrogen bonding force γ S h to the surface tensions for the silica membranes were evaluated by the extended Fowkes equation. The surface free energy and surface wettability of the silica membranes decrease greatly with the increasing of MTES/TEOS ratio mainly because of the contribution of hydrogen bonding force. FTIR analysis shows that the reason is the increase of Si–CH3 group amount and the decrease of O–H group amount on the surfaces of silica membranes. After aging in steam circumstances, the increase of surface free energies results from the increase of O–H amount present on the silica membrane surfaces. The methyl ligands can make the mean pore size and total pore volume of silica membrane larger. Compared with the unmodified silica membrane, the gas permselectivities of the MTES-modified silica membranes have no obvious decrease in despite of the greatly increase of gas permeation rates. As the silica membranes are aged in steam circumstances, the decrease of gas permeation rates in the silica membrane with MTES/TEOS = 0 is far more than that in the silica membrane with MTES/TEOS = 0.8 while their H2/CO2 selectivities have no notable change.


Surface free energy Steam stability N2 adsorption–desorption Permeance Permselectivity 



The authors are grateful for the financial support of the National Natural and Science Foundation Council of China 30571636 and 20877062, the Natural Science Foundation of Shanxi Province Education Office 05JK208, the Basic Research Foundation of Xi’an Polytechnic University XGJ08002 and the Doctoral Program of Higher Education of China 20060698002.


  1. 1.
    S. Gopalakrishnan, M. Nomura, T. Sugawara, S. Nakao, Desalination 193, 230 (2006). doi: 10.1016/j.desal.2005.10.021 CrossRefGoogle Scholar
  2. 2.
    M. Kanezashi, M. Asaeda, J. Memb. Sci. 271, 86 (2006). doi: 10.1016/j.memsci.2005.07.011 CrossRefGoogle Scholar
  3. 3.
    S. Araki, N. Mohri, Y. Yoshimitsu, Y. Miyake, J. Memb. Sci. 290, 138 (2007). doi: 10.1016/j.memsci.2006.12.034 CrossRefGoogle Scholar
  4. 4.
    M.C. Duke, J.C. Diniz da Costa, G.Q. (Max) Lu, M. Petch, P. Gray, J. Memb. Sci. 241, 325 (2004). doi: 10.1016/j.memsci.2004.06.004 CrossRefGoogle Scholar
  5. 5.
    J.H. Moon, J.H. Bae, Y.S. Bae, J.T. Chung, C.H. Lee, J. Memb. Sci. 318, 45 (2008). doi: 10.1016/j.memsci.2008.02.001 CrossRefGoogle Scholar
  6. 6.
    C.Y. Tsai, S.Y. Tam, Y. Lu, C.J. Brinker, J. Memb. Sci. 169, 255 (2000). doi: 10.1016/S0376-7388(99)00343-9 CrossRefGoogle Scholar
  7. 7.
    R.M. de Vos, H. Verweij, J. Memb. Sci. 143, 37 (1998). doi: 10.1016/S0376-7388(97)00334-7 CrossRefGoogle Scholar
  8. 8.
    S.I. Nakao, T. Suzuki, T. Sugawara, T. Tsuru, S. Kimura, Microporous Mesoporous Mater. 37, 145 (2000). doi: 10.1016/S1387-1811(99)00261-9 CrossRefGoogle Scholar
  9. 9.
    B.N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, S.I. Nakao, J. Memb. Sci. 135, 237 (1997). doi: 10.1016/S0376-7388(97)00137-3 CrossRefGoogle Scholar
  10. 10.
    R.M. de Vos, H. Verweij, Science 279, 1710 (1998). doi: 10.1126/science.279.5357.1710 CrossRefGoogle Scholar
  11. 11.
    S. Yan, H. Maseda, K. Kusakabe, S. Morooka, Ind. Eng. Chem. Res. 33, 2096 (1994). doi: 10.1021/ie00033a011 CrossRefGoogle Scholar
  12. 12.
    B. Singh, A.C. Sheth, N.B. Dahotre, Appl. Surf. Sci. 253, 1247 (2006). doi: 10.1016/j.apsusc.2006.01.079 CrossRefGoogle Scholar
  13. 13.
    Y. Li, H. Zhou, G. Zhu, J. Liu, W. Yang, J. Memb. Sci. 297, 10 (2007). doi: 10.1016/j.memsci.2007.03.041 CrossRefGoogle Scholar
  14. 14.
    M. Kanezashi, J. O’Brien, Y.S. Lin, Microporous Mesoporous Mater. 103, 302 (2007). doi: 10.1016/j.micromeso.2007.02.019 CrossRefGoogle Scholar
  15. 15.
    L. Zhang, X. Chen, C. Zeng, N. Xu, J. Memb. Sci. 281, 429 (2006). doi: 10.1016/j.memsci.2006.04.011 CrossRefGoogle Scholar
  16. 16.
    H.B. Park, I.Y. Suh, Y.M. Lee, Chem. Mater. 14, 3034 (2002). doi: 10.1021/cm020216v CrossRefGoogle Scholar
  17. 17.
    J.N. Barsema, J. Balster, V. Jordan, N.F.A. van der Vegt, M. Wessling, J. Memb. Sci. 219, 47 (2003). doi: 10.1016/S0376-7388(03)00176-5 CrossRefGoogle Scholar
  18. 18.
    D. Lee, L. Zhang, S.T. Oyama, S. Niu, R.F. Saraf, J. Memb. Sci. 231, 117 (2004). doi: 10.1016/j.memsci.2003.10.044 CrossRefGoogle Scholar
  19. 19.
    A.P. Rao, A.V. Rao, G.M. Pajonk, Appl. Surf. Sci. 253, 6032 (2007). doi: 10.1016/j.apsusc.2006.12.117 CrossRefGoogle Scholar
  20. 20.
    Y. Iwamoto, K. Sato, T. Kato, T. Inada, Y. Kubo, J. Eur. Ceram. Soc. 25, 257 (2005). doi: 10.1016/j.jeurceramsoc.2004.08.007 CrossRefGoogle Scholar
  21. 21.
    M. Nomura, K. Ono, S. Gopalakrishnan, T. Sugawara, S.I. Nakao, J. Memb. Sci. 251, 151 (2005). doi: 10.1016/j.memsci.2004.11.008 CrossRefGoogle Scholar
  22. 22.
    A.V. Rao, N.D. Hegde, P.M. Shewale, Appl. Surf. Sci. 253, 4137 (2007). doi: 10.1016/j.apsusc.2006.12.117 CrossRefGoogle Scholar
  23. 23.
    V. Rouessac, P. Ferreira, J. Durand, Sep. Purif. Technol. 32, 37 (2003). doi: 10.1016/S1383-5866(03)00039-X CrossRefGoogle Scholar
  24. 24.
    F. Wang, J. Liu, Z. Luo, Q. Zhang, P. Wang, X. Liang, C. Li, J. Chen, J. Non-Cryst. Solids 353, 321 (2007). doi: 10.1016/j.jnoncrysol.2006.05.033 CrossRefGoogle Scholar
  25. 25.
    B. Zhou, J. Shen, Y.H. Wu, G.M. Wu, X.Y. Ni, Mater. Sci. Eng. C 27, 1291 (2007). doi: 10.1016/j.msec.2006.06.032 CrossRefGoogle Scholar
  26. 26.
    R.M. De Vos, W.F. Maier, H. Verweij, J. Memb. Sci. 158, 277 (1999). doi: 10.1016/S0376-7388(99)00035-6 CrossRefGoogle Scholar
  27. 27.
    Y. Gu, P. Hacarlioglu, S. Ted Oyama, J. Memb. Sci. 310, 28 (2008). doi: 10.1016/j.memsci.2007.10.025 CrossRefGoogle Scholar
  28. 28.
    K. Yoshida, Y. Hirano, H. Fujii, T. Tsuru, M. Asaeda, J. Chem. Eng. Jpn. 34, 523 (2001). doi: 10.1252/jcej.34.523 CrossRefGoogle Scholar
  29. 29.
    S.W. Nam, H.Y. Ha, S.P. Yoon, J. Han, T.H. Lim, I.H. Oh, S.A. Hong, J. Korean Memb. 3, 69 (2001)Google Scholar
  30. 30.
    M. Kanezashi, T. Fujita, M. Asaeda, Sep. Sci. Technol. 40, 225 (2005). doi: 10.1081/SS-200041989 CrossRefGoogle Scholar
  31. 31.
    M. Kanezashi, T. Yoshioka, T. Tsuru, M. Asaeda, Trans. Mater. Res. Soc. Jpn. 29, 3267 (2004)Google Scholar
  32. 32.
    V. Boffa, D.H.A. Blank, J.E. ten Elshof, J. Memb. Sci. 319, 256 (2008). doi: 10.1016/j.memsci.2008.03.042 CrossRefGoogle Scholar
  33. 33.
    M. Nomura, H. Aida, S. Gopalakrishnan, T. Sugawara, S. Nakao, S. Yamazaki, T. Inada, Y. Iwamoto, Desalination 193, 1 (2006). doi: 10.1016/j.desal.2005.08.019 CrossRefGoogle Scholar
  34. 34.
    M. Nomura, M. Seshino, H. Aida, K. Nakatani, S. Gopalakrishnan, T. Sugawara, T. Ishikawa, M. Kawamura, S. Nakao, Ind. Eng. Chem. Res. 45, 3950 (2006). doi: 10.1021/ie051345z CrossRefGoogle Scholar
  35. 35.
    S. Giessler, L. Jordan, J.C. Diniz da Costa, G.Q.M. Lu, Sep. Purif. Technol. 32, 255 (2003). doi: 10.1016/S1383-5866(03)00069-8 CrossRefGoogle Scholar
  36. 36.
    S. Štandeker, Z. Novak, Ž. Knez, J. Coll. Interf. Sci. 310, 362 (2007). doi: 10.1016/j.jcis.2007.02.021 CrossRefGoogle Scholar
  37. 37.
    H.L. Castricum, M.C. Mittelmeijer-Hazeleger, A. Sah, J.E. Elshof, Microporous Mesoporous Mater. 88, 63 (2006). doi: 10.1016/j.micromeso.2005.08.033 CrossRefGoogle Scholar
  38. 38.
    A.V. Rao, D. Haranath, Microporous Mesoporous Mater. 30, 267 (1999). doi: 10.1016/S1387-1811(99)00037-2 CrossRefGoogle Scholar
  39. 39.
    J.C.D. da Costa, G.Q. Lu, V. Rudolph, Colloids. Surf. A Physicochem. Eng. Asp. 179, 243 (2001). doi: 10.1016/S0927-7757(00)00644-0 CrossRefGoogle Scholar
  40. 40.
    S.D. Bhagat, Y.H. Kim, Y.S. Ahn, Appl. Surf. Sci. 253, 2217 (2006). doi: 10.1016/j.apsusc.2006.04.030 CrossRefGoogle Scholar
  41. 41.
    Y. Xu, D. Wu, Y.H. Sun, Z.H. Li, B.Z. Dong, Z.H. Wu, J. Non-Cryst. Solids 351, 258 (2005). doi: 10.1016/j.jnoncrysol.2004.11.011 CrossRefGoogle Scholar
  42. 42.
    S. Lee, Y.C. Cha, H.J. Hwang, J.W. Moon, I.S. Han, Mater. Lett. 61, 3130 (2007). doi: 10.1016/j.matlet.2006.11.010 CrossRefGoogle Scholar
  43. 43.
    H. Jiang, Z. Zheng, X. Wang, Vib. Spectrosc. 46, 1 (2008). doi: 10.1016/j.vibspec.2007.07.002 CrossRefGoogle Scholar
  44. 44.
    K. Kamiya, A. Katayama, H. Suzuki, K. Nishida, T. Hashimoto, J. Matsuoka, H. Nasu, J. Sol-Gel Sci. Technol. 14, 95 (1999). doi: 10.1023/A:1008784032647 CrossRefGoogle Scholar
  45. 45.
    K. Yamaishi, H. Kumazawa, H. Sanuki, J. Fiber Inst. Jpn. 32, 65 (1976)Google Scholar
  46. 46.
    C. Jie-Rong, W. Xue-Yan, W. Tomiji, Appl. Polym. Sci. 72, 1327 (1999). doi:10.1002/(SICI)1097-4628(19990606)72:10<1327::AID-APP13>3.0.CO;2-0CrossRefGoogle Scholar
  47. 47.
    H. Zhang, D. Simpson, S. Kumar, R.S.C. Smart, Colloids Surf. A Physicochem. Eng. Asp. 291, 128 (2006). doi: 10.1016/j.colsurfa.2006.07.057 CrossRefGoogle Scholar
  48. 48.
    Y. Kitazaki, T. Hata, J. Adhes. Inst. Jpn. 8, 131 (1972)Google Scholar
  49. 49.
    C. Wang, J.R. Chen, Appl. Surf. Sci. 253, 4599 (2007). doi: 10.1016/j.apsusc.2006.10.014 CrossRefGoogle Scholar
  50. 50.
    R.S.A. de Lange, K. Keizer, A.J. Burggraaf, J. Memb. Sci. 104, 81 (1995). doi: 10.1016/0376-7388(95)00014-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Environment and Chemistry EngineeringXi’an Polytechnic UniversityXi’anChina

Personalised recommendations