Advertisement

Journal of Porous Materials

, 16:721 | Cite as

Catalytic study of MCM-41 immobilized RhCl3 for the hydroformylation of styrene

  • Yasan He
  • Gang Chen
  • Sibuding Kawi
  • Shychi Wong
Article

Abstract

RhCl3 was chemically immobilized on mesoporous silicate MCM-41 functionalized by amine or phosphorus organosilane to form heterogeneous catalysts: RhCl3/MCM-41(NH2) and RhCl3/MCM-41(PPh2). XRD and N2 adsorption–desorption studies illustrated that the functionalized MCM-41 maintained the mesoporous structural ordering, but exhibited reduced pore sizes, total pore volumes and BET surface areas. XPS characterization indicated that chemical interaction between rhodium species of RhCl3 and the surface ligands occurred, and rhodium (III) species were reduced to lower oxidation states. RhCl3/MCM-41(NH2) was tested to be stable for recycling, however a significant rhodium leakage was observed for RhCl3/MCM-41(PPh2). The catalytic system formed of the prepared RhCl3/MCM-41(NH2) catalyst and additional PPh3 (PPh3/Rh = 2.5) showed very good catalytic activity and high selectivity toward the branched aldehydes in the hydroformylation of styrene.

Keywords

RhCl3 Hydroformylation Styrene MCM-41 Mesoporous 

References

  1. 1.
    G.W. Parshall, S.D. Ittel, Homogeneous Catalysis: The Application and Chemistry of Catalysis by Soluble Transition Metal Complexes, 2nd edn. (Wiley, New York, 1992)Google Scholar
  2. 2.
    W.N.M. van Leeuwen, C. Claver, Rhodium Catalyzed Hydroformylation (Kluwer Academic Publishers, London, 2000)Google Scholar
  3. 3.
    E. Lindner, T. Schneller, F. Auer, H.A. Mayer, Angew. Chem. Int. Ed. 38, 2154 (1999). doi:10.1002/(SICI)1521-3773(19990802)38:15<2154::AID-ANIE2154>3.0.CO;2-TCrossRefGoogle Scholar
  4. 4.
    B. Cornils, W.A. Herrmann, R.W. Eckl, J. Mol. Catal. Chem. 116, 27 (1997). doi: 10.1016/S1381-1169(96)00073-8 CrossRefGoogle Scholar
  5. 5.
    J.P. Arhancet, M.E. Davis, J.S. Merola, B. Hanson, Nature 339, 454 (1989). doi: 10.1038/339454a0 CrossRefGoogle Scholar
  6. 6.
    M.T. Reetz, G. Lohmer, R. Schwickardi, Angew. Chem. Int. Ed. Engl. 36, 1526 (1997). doi: 10.1002/anie.199715261 CrossRefGoogle Scholar
  7. 7.
    A.N. Ajjou, H. Alper, J. Am. Chem. Soc. 120, 1466 (1998). doi: 10.1021/ja973048u CrossRefGoogle Scholar
  8. 8.
    K.K. Bando, K. Asakura, H. Arakawa, K. Isobe, Y. Iwasawa, J. Phys. Chem. 100, 13636 (1996). doi: 10.1021/jp953124k CrossRefGoogle Scholar
  9. 9.
    V.L.K. Valli, H. Alper, Chem. Mater. 7, 359 (1995). doi: 10.1021/cm00050a019 CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, H.-B. Zhang, G.-D. Lin, P. Chen, Y.-Z. Yuan, K.R. Tsai, Appl. Catal. A 187, 213 (1999). doi: 10.1016/S0926-860X(99)00229-X CrossRefGoogle Scholar
  11. 11.
    K. Nozaki, F. Shibahara, Y. Itoi, E. Shirakawa, T. Ohta, H. Takaya, T. Hiyama, Bull. Chem. Soc. Jpn. 72, 1911 (1999). doi: 10.1246/bcsj.72.1911 CrossRefGoogle Scholar
  12. 12.
    J. Balúe, J.C. Bayón, J. Mol. Catal. A 137, 193 (1999). doi: 10.1016/S1381-1169(98)00124-1 CrossRefGoogle Scholar
  13. 13.
    J.A. D’ıaz-Auñón, M.C. Román-Mart’ınez, C. Salinas-Mart’ınez de Lecea, J. Mol. Catal. A 170, 81 (2001). doi: 10.1016/S1381-1169(01)00093-0 CrossRefGoogle Scholar
  14. 14.
    J.A. D’ıaz Auñón, M.C. Román Mart’ınez, P. L’Argentiére, C. Salinas Mart’ınez de Lecea, Stud. Surf. Sci. Catal. 130, 2075 (2000). doi: 10.1016/S0167-2991(00)80774-0 CrossRefGoogle Scholar
  15. 15.
    J.L.G. Fierro, M.D. Merchán, S. Rojas, P. Terreros, J. Mol. Catal. A 166, 255 (2001). doi: 10.1016/S1381-1169(00)00478-7 CrossRefGoogle Scholar
  16. 16.
    S. Rojas, P. Terreros, J.L.G. Fierro, J. Mol. Catal. A 184, 19 (2002). doi: 10.1016/S1381-1169(01)00524-6 CrossRefGoogle Scholar
  17. 17.
    J. Wrzyszcz, M. Zawadzki, A.M. Trzeciak, J.J. Ziólokowski, J. Mol. Catal. Chem. 189, 203 (2002). doi: 10.1016/S1381-1169(02)00073-0 CrossRefGoogle Scholar
  18. 18.
    D.E. Bryant, M. Kilner, J. Mol. Catal. A 193, 83 (2003). doi: 10.1016/S1381-1169(02)00493-4 CrossRefGoogle Scholar
  19. 19.
    S.C. Bourque, F. Maltais, W.J. Xiao, O. Tardiff, H. Alper, P. Arya, L. Manzer, J. Am. Chem. Soc. 121, 3035 (1999). doi: 10.1021/ja983764b CrossRefGoogle Scholar
  20. 20.
    M.C. Román-Mart’ınez, J.A. D’ıaz-Auñón, C. Salinas-Mart’ınez de Lecea, H. Alper, J. Mol. Catal. A 213, 177 (2004). doi: 10.1016/j.molcata.2003.12.015 CrossRefGoogle Scholar
  21. 21.
    L. Sordelli, M. Guidotti, D. Andreatta, G. Vlaic, R. Psaro, J. Mol. Catal. A 204–205, 509 (2003). doi: 10.1016/S1381-1169(03)00333-9 Google Scholar
  22. 22.
    C.M. Standfest-Hauser, T. Lummerstorfer, R. Schmid, H. Hoffmann, K. Kirchner, M. Puchberger, A.M. Trzeciak, E. Mieczy’nska, W. Tylus, J.J. Ziółkowski, J. Mol. Catal. A 210, 179 (2004). doi: 10.1016/j.molcata.2003.09.012 CrossRefGoogle Scholar
  23. 23.
    M. Beller, B. Cornils, C.D. Frohning, C.W. Kohlpaintner, J. Mol. Catal. A 104, 17 (1995). doi: 10.1016/1381-1169(95)00130-1 CrossRefGoogle Scholar
  24. 24.
    A. Luchetti, D.M. Hercules, J. Mol. Catal. 16, 95 (1982). doi: 10.1016/0304-5102(82)80068-0 CrossRefGoogle Scholar
  25. 25.
    B.E. Ali, J. Tijani, M. Fettouhi, J. Mol. Catal. A 250, 153 (2006). doi: 10.1016/j.molcata.2006.01.057 CrossRefGoogle Scholar
  26. 26.
    B.E. Ali, J. Tijani, M. Fettouhi, Appl. Catal. A 303, 213 (2006). doi: 10.1016/j.apcata.2006.02.004 CrossRefGoogle Scholar
  27. 27.
    Y. Yang, C. Deng, Y. Yuan, J. Catal. 232, 108 (2005). doi: 10.1016/j.jcat.2005.02.017 CrossRefGoogle Scholar
  28. 28.
    Q. Peng, Y. Yang, Y. Yuan, J. Mol. Catal. A 219, 175 (2004). doi: 10.1016/j.molcata.2004.05.003 CrossRefGoogle Scholar
  29. 29.
    M. Nowotny, T. Maschmeyer, B.F.G. Johnson, P. Lahuerta, J.M. Thomas, J.E. Davies, Angew. Chem. Int. Ed. 40, 955 (2000). doi:10.1002/1521-3773(20010302)40:5<955::AID-ANIE955>3.0.CO;2-GCrossRefGoogle Scholar
  30. 30.
    L. Huang, J.C. Wu, S. Kawi, J. Mol. Catal. A 206, 371 (2003). doi: 10.1016/S1381-1169(03)00423-0 CrossRefGoogle Scholar
  31. 31.
    L. Huang, Y. He, S. Kawi, Appl. Catal. A 265, 247 (2004). doi: 10.1016/j.apcata.2004.01.018 CrossRefGoogle Scholar
  32. 32.
    L. Huang, Y. He, S. Kawi, J. Mol. Catal. A 213, 241 (2004). doi: 10.1016/j.molcata.2003.12.007 CrossRefGoogle Scholar
  33. 33.
    A. Marteel, J.A. Davies, M.R. Mason, T. Tack, S. Bektesevic, M.A. Abraham, Catal. Commun. 4, 309 (2003). doi: 10.1016/S1566-7367(03)00058-X CrossRefGoogle Scholar
  34. 34.
    K.G. Alum, R.D. Hancock, I.V. Howell, S. Mckenzie, R.C. Pitkethly, P.J. Robinson, J. Organomet. Chem. 87, 203 (1975). doi: 10.1016/S0022-328X(00)91286-5 CrossRefGoogle Scholar
  35. 35.
    K. Kochloefl, W. Liebelt, H. Knozinger, J. Chem. Soc. Chem. Commun. 510 (1977). doi: 10.1039/c39770000510
  36. 36.
    S.C. Shen, S. Kawi, J. Phys. Chem. B 103, 8870 (1999). doi: 10.1021/jp991831y CrossRefGoogle Scholar
  37. 37.
    H. Knozinger, Inorg. Chim. Acta. 37, 537 (1979). doi: 10.1016/S0020-1693(00)95499-9 CrossRefGoogle Scholar
  38. 38.
    A.M. Trzreciak, J.J. Ziolkowski, Coord. Chem. Rev. 190–2, 883 (1999). doi: 10.1016/S0010-8545(99)00127-7 CrossRefGoogle Scholar
  39. 39.
    R.L. Pruett, Adv. Organomet. Chem. 17, 1 (1979). doi: 10.1016/S0065-3055(08)60320-2 CrossRefGoogle Scholar
  40. 40.
    R. Lazzaroni, R. Raffaelli, R. Settambolo, S. Betozzi, G. Vitulli, J. Mol. Catal. 50, 1 (1989). doi: 10.1016/0304-5102(89)80104-X CrossRefGoogle Scholar
  41. 41.
    J. Feng, M. Garland, Organometallics 18, 417 (1999). doi: 10.1021/om980514v CrossRefGoogle Scholar
  42. 42.
    M. Kranenburg, Y.E.M. van der Burgt, P.C.J. Kaer, P.W.N.M. van Leeuwen, Organometallics 14, 3081 (1995). doi: 10.1021/om00006a057 CrossRefGoogle Scholar
  43. 43.
    C.K. Brown, G. Wilkinson, J. Chem. Soc. A 12, 2753 (1970). doi: 10.1039/j19700002753
  44. 44.
    W. Strohmeier, A. Kühn, J. Organomet. Chem. 110, 265 (1976). doi: 10.1016/S0022-328X(00)89697-7 CrossRefGoogle Scholar
  45. 45.
    A.R. Sanger, J. Mol. Catal. 3, 221 (1977–1978)Google Scholar
  46. 46.
    J. Hjortkjaer, J. Mol. Catal. 5, 377 (1979). doi: 10.1016/0304-5102(79)80013-9 CrossRefGoogle Scholar
  47. 47.
    H. Janecko, A.M. Trzeciak, J.J. Ziolkowski, J. Mol. Catal. 26, 355 (1984). doi: 10.1016/0304-5102(84)85109-3 CrossRefGoogle Scholar
  48. 48.
    A.M. Trzeciak, J.J. Ziolkowski, R. Choukroun, J. Organomet. Chem. 420, 353 (1991). doi: 10.1016/0022-328X(91)86463-Z CrossRefGoogle Scholar
  49. 49.
    E. Mieczynska, A.M. Trzeciak, J. Ziolkowski, J. Mol. Catal. 73, 1 (1992). doi: 10.1016/0304-5102(92)80056-M CrossRefGoogle Scholar
  50. 50.
    M. Moszner, A.M. Trzeciak, J.J. Ziolkowski, J. Mol. Catal. A 130, 241 (1998). doi: 10.1016/S1381-1169(97)00225-2 CrossRefGoogle Scholar
  51. 51.
    D. Evans, J.A. Obsburn, G. Wilkinson, J. Chem. Soc. A 17, 3133 (1968). doi: 10.1039/j19680003133
  52. 52.
    I. Ojima, Chem. Rev. 88, 1011 (1988). doi: 10.1021/cr00089a002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yasan He
    • 1
    • 2
  • Gang Chen
    • 1
  • Sibuding Kawi
    • 2
  • Shychi Wong
    • 2
  1. 1.Department of Chemistry and Environmental ScienceZhangzhou Normal UniversityZhangzhouPeople’s Republic of China
  2. 2.Department of Chemical and Bimolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations