Journal of Porous Materials

, 16:667 | Cite as

Comparative ion-exchange characterization of zeolitic and clayey materials for pedotechnical applications—Part 2: interaction with nutrient cations

  • B. de Gennaro
  • P. Aprea
  • C. Colella
  • A. Buondonno


With the purpose to evaluate the possible use of a phillipsite-rich tuff, in place of the naturally occurring clay minerals, as inorganic ion-exchanger component of organo-mineral aggregates of pedotechnical interest, the ion-exchange behavior of Neapolitan yellow tuff and a reference montmorillonite-rich material towards some nutrient cations was investigated. Accordingly, exchange kinetics and isotherms of Na+, K+, and NH4 + for Ca2+, at 25 °C and 0.1 total normality, were determined, and the related kinetic and thermodynamic quantities computed. The obtained results point out that the zeolitic material, apart from a higher cation exchange capability, exhibits selectivity performances towards nutrient cations comparable or even better than those of the montmorillonitic material, confirming, on the basis of the previous data concerning noxious cations, that phillipsite-rich tuffs can be considered potential substitutes of clay materials to recover and/or rebuild polluted and degraded soils.


Degraded soils Zeolitized tuff Clayey materials Ion exchange Nutrient cations 


  1. 1.
    S. Goldberg, I. Lebron, D.L. Suarez, in Handbook of Soil Science, ed. by P.M. Huang (CRC, Boca Raton, 2000), p. 195Google Scholar
  2. 2.
    D.L. Sparks (ed.), Soil Physical Chemistry (CRC, Boca Raton, 1999)Google Scholar
  3. 3.
    G. Sposito, in Handbook of Soil Science, ed. by M.E. Sumner (CRC, Boca Raton, 2000), p. 241Google Scholar
  4. 4.
    B.J. Alloway (ed.), Heavy Metals in Soils, 2nd edn. (Blackie Academic and Professional, Glasgow, 1990)Google Scholar
  5. 5.
    S. Capasso, S. Salvestrini, E. Coppola, A. Buondonno, C. Colella, Appl. Clay Sci. 28(1–4), 47 (2005). doi: 10.1016/j.clay.2004.01.010 Google Scholar
  6. 6.
    S. Capasso, S. Salvestrini, E. Coppola, A. Buondonno, C. Colella, J. Porous. Mater. 14, 363 (2007). doi: 10.1007/s10934-006-9074-2 CrossRefGoogle Scholar
  7. 7.
    S. Capasso, E. Coppola, P. Iovino, S. Salvestrini, C. Colella, Micropor. Mesopor. Mater. 105, 324 (2007). doi: 10.1016/j.micromeso.2007.04.017 CrossRefGoogle Scholar
  8. 8.
    B. de Gennaro, P. Aprea, F. Pepe, C. Colella, in From Zeolites to Porous MOF Materials. The 40th Anniversary of International Zeolite Conferences, ed. by R. Xu, J. Chen, Z. Gao, W. Yan (Studies in Surface Science and Catalysis No. 170, Elsevier, Amsterdam, 2001), p. 2128Google Scholar
  9. 9.
    B. de Gennaro, P. Aprea, C. Colella, A. Buondonno, J. Porous. Mater. 14, 349 (2007). doi: 10.1007/s10934-006-9073-3 CrossRefGoogle Scholar
  10. 10.
    H.D. Chapman, in Methods of Soil Analysis, Agronomy Series No. 9, Part 2, ed. by A. Black (Am. Inst. of Agronomy, Madison, 1965), p. 891Google Scholar
  11. 11.
    I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916). doi: 10.1021/ja02268a002 CrossRefGoogle Scholar
  12. 12.
    P. Fletcher, R.P. Townsend, J. Chem. Soc. Faraday Trans. I 77, 497 (1981). doi: 10.1039/f19817700497 CrossRefGoogle Scholar
  13. 13.
    M. Pansini, D. Caputo, B. de Gennaro, P. Aprea, C. Ferone, C. Colella, in Oxide Based Materials. New Sources, Novel Phases, New Applications, ed. by A. Gamba, C. Colella, S. Coluccia (Studies in Surface Science and Catalysis No. 155, Elsevier, Amsterdam, 2005), p. 129Google Scholar
  14. 14.
    C. Colella, Miner. Depos. 31, 554 (1996). doi: 10.1007/BF00196136 CrossRefGoogle Scholar
  15. 15.
    C. Baerlocher, L.B. McCusker, D.H. Olson (eds.), Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007), p. 46Google Scholar
  16. 16.
    C. Colella, E. Torracca, A. Colella, B. de Gennaro, D. Caputo, M. de’ Gennaro, in Zeolites and Mesoporous Materials at the Dawn of the 21st Century, ed. by A. Galarneau, F. Di Renzo, F. Fajula, J. Vedrine (Studies in Surface Science and Catalysis No. 135, Elsevier, Amsterdam, 2001) (paper 01-O-05 in CD Rom)Google Scholar
  17. 17.
    B. de Gennaro, A. Colella, P. Aprea, C. Colella, Micropor. Mesopor. Mater. 61, 159 (2003). doi: 10.1016/S1387-1811(03)00363-9 CrossRefGoogle Scholar
  18. 18.
    A. Maes, A. Cremers, J. Chem. Soc. Faraday Trans. I. 73, 1807 (1977)CrossRefGoogle Scholar
  19. 19.
    I. Shainberg, N.I. Alperovitch, R. Keren, Clays Clay Miner. 35(1), 68 (1987). doi: 10.1346/CCMN.1987.0350109 CrossRefGoogle Scholar
  20. 20.
    D.A. Laird, C. Shang, Clays Clay Miner. 45(5), 681 (1997). doi: 10.1346/CCMN.1997.0450507 CrossRefGoogle Scholar
  21. 21.
    J.J. Fripiat, P. Cloos, A. Poncelet, Bull. Soc. Chim. Fr. 208 (1965)Google Scholar
  22. 22.
    K. Verburg, P. Baveye, Clays Clay Miner. 42(2), 207 (1994). doi: 10.1346/CCMN.1994.0420211 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B. de Gennaro
    • 1
  • P. Aprea
    • 1
  • C. Colella
    • 1
  • A. Buondonno
    • 2
  1. 1.Dipartimento di Ingegneria dei Materiali e della ProduzioneUniversità Federico IINapoliItaly
  2. 2.Dipartimento di Scienze AmbientaliSeconda Università di NapoliCasertaItaly

Personalised recommendations