Advertisement

Journal of Porous Materials

, Volume 16, Issue 4, pp 481–486 | Cite as

Effect of pH in hydrothermal treatment of as-synthesized MCM-41 on wetting stability of resulting materials in aqueous solution

  • Takayoshi Shindo
  • Yuta Nakazawa
  • Sentaro Ozawa
Article

Abstract

Effect of pH in aqueous media used in the hydrothermal treatment of as-synthesized MCM-41 on the structure and the wetting stability of the resulting materials was studied using XRD, TG-DTA and N2 adsorption. The long-range structural order and the wetting stability of the mesoporous MCM-41 were improved through hydrothermal treatment of as-synthesized sample at around pH 7 without salt addition. The pH adjustment of aqueous media toward neutral is thought to shift the polymerization equilibrium of silica species around external surface of the micelles to a higher degree of condensation, and to reduce the electrostatic repulsion between the silicate–micelle composites. This leads to the further formation of Si–O–Si network within the silica walls of the mesoporous materials, resulting in the enhancement of the structural stability of MCM-41 samples.

Keywords

Mesoporous silica MCM-41 Wetting stability pH adjustment Hydrothermal treatment of as-synthesized MCM-41 

References

  1. 1.
    C.Y. Chen, H.X. Li, M.E. Davis, Microporous Mater. 2, 17 (1993). doi: 10.1016/0927-6513(93)80058-3 CrossRefGoogle Scholar
  2. 2.
    L.Y. Chen, S. Jaenicke, G.K. Chuah, Microporous Mater. 12, 323 (1997). doi: 10.1016/S0927-6513(97)00079-5 CrossRefGoogle Scholar
  3. 3.
    N.Y. He, S.L. Buo, Q.H. Xu, Stud. Surf. Sci. Catal. 105, 85 (1997). doi: 10.1016/S0167-2991(97)80542-3 CrossRefGoogle Scholar
  4. 4.
    R. Ryoo, J.M. Kim, J. Chem. Soc. Chem. Commun., 711 (1995). doi: 10.1039/c39950000711
  5. 5.
    R. Ryoo, S. Jun, J. Phys. Chem. 101, 317 (1997). doi: 10.1021/jp962500d Google Scholar
  6. 6.
    B. Lindlar, A. Kogelbauer, R. Prins, Microporous Mesoporous Mater. 37, 167 (2000). doi: 10.1016/S1387-1811(99)00291-7 CrossRefGoogle Scholar
  7. 7.
    M.V. Lau, S.P. Varkey, M. Herskowitz, O. Regev, S. Pevzner, T. Sen et al., Microporous Mesoporous Mater. 33, 149 (1999). doi: 10.1016/S1387-1811(99)00133-X CrossRefGoogle Scholar
  8. 8.
    J. Yu, J.-L. Shi, L.-Z. Wang, M.-L. Ruan, D.-S. Yan, Mater. Lett. 48, 112 (2001). doi: 10.1016/S0167-577X(00)00289-5 CrossRefGoogle Scholar
  9. 9.
    D. Dllimore, G.R. Heal, J Appl. Chem. 14, 109 (1964)CrossRefGoogle Scholar
  10. 10.
    D. Dollimore, G.R. Heal, J. Colloid Interface Sci. 33, 508 (1970). doi: 10.1016/0021-9797(70)90002-0 CrossRefGoogle Scholar
  11. 11.
    K. Fang, J. Ren, Y. Sun, Mater. Chem. Phys. 90, 16 (2005). doi: 10.1016/j.matchemphys.2004.05.018 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Takayoshi Shindo
    • 1
  • Yuta Nakazawa
    • 1
  • Sentaro Ozawa
    • 1
  1. 1.Department of Materials-Process Engineering and Applied Chemistry for Environments, Faculty of Engineering and Resource ScienceAkita UniversityGakuen-choJapan

Personalised recommendations