Advertisement

Journal of Porous Materials

, Volume 16, Issue 4, pp 453–458 | Cite as

Diluent crystal alignment in the formation of membranes via liquid–solid thermally induced phase separation

  • Caleb V. Funk
  • Patrick L. Hanks
  • Kelsie J. Kaczorowski
  • Douglas R. Lloyd
Article

Abstract

Liquid–solid thermally induced phase separation (L–S TIPS), in which a diluent crystallizes within a liquid polymer matrix, has been used to produce microporous materials previously. However, little work has been done applying this concept to membrane formation due to the fact that these materials are tortuous and show no advantage over other microporous materials. This paper suggests a method of crystal alignment in L–S TIPS, which could lead to microporous membranes of high porosity, high selectivity, and low tortuosity.

Keywords

Liquid–solid TIPS Microporous membrane Crystal alignment 

Notes

Acknowledgments

This research was supported by the National Water Research Institute, NSF Grant #CTS–0625233, and the Cockrell School of Engineering at The University of Texas at Austin.

References

  1. 1.
    A.J. Castro, US 4,247,498, Akzona Inc.Google Scholar
  2. 2.
    G.T. Caneba, D.S. Soong, Macromolecules 18, 2538 (1985). doi: 10.1021/ma00154a031 CrossRefGoogle Scholar
  3. 3.
    L.J. Zeman, A.L. Zydney, Microfiltration and Ultrafiltration: Principles and Applications (Marcel Dekker, Inc., New York, 1996)Google Scholar
  4. 4.
    A.R. Zembrodt, U.S. Patent 4,948,047, Drackett CompanyGoogle Scholar
  5. 5.
    K. Takita, K. Kono, T. Takashima, K. Okamoto, U.S. Patent 5,051,183, Tonen CorporationGoogle Scholar
  6. 6.
    T. Hasegawa, T. Kondo, U.S. Patent 6,127,438, Asahi Kasei Kogyo Kabushiki KaishaGoogle Scholar
  7. 7.
    D.R. Lloyd, K.E. Kinzer, H.S. Tseng, J. Membr. Sci. 52, 239 (1990). doi: 10.1016/S0376-7388(00)85130-3 CrossRefGoogle Scholar
  8. 8.
    D.R. Lloyd, S.S. Kim, K.E. Kinzer, J. Membr. Sci. 64, 1 (1991). doi: 10.1016/0376-7388(91)80073-F CrossRefGoogle Scholar
  9. 9.
    P. Smith, A.J. Pennings, Polymer (Guildf) 15, 413 (1974). doi: 10.1016/0032-3861(74)90103-7 CrossRefGoogle Scholar
  10. 10.
    A.A. Alwattari, D.R. Lloyd, J. Membr. Sci. 64, 55 (1991). doi: 10.1016/0376-7388(91)80077-J CrossRefGoogle Scholar
  11. 11.
    A.A. Alwattari, D.R. Lloyd, Polymer (Guildf) 35, 2710 (1994). doi: 10.1016/0032-3861(94)90297-6 CrossRefGoogle Scholar
  12. 12.
    A.A. Alwattari, D.R. Lloyd, Polymer (Guildf) 39, 1129 (1998). doi: 10.1016/S0032-3861(97)00396-0 CrossRefGoogle Scholar
  13. 13.
    A. Alwattari, Thermally induced phase separation of isotactic polypropylene and hexamethylbenzene. PhD Dissertation, The University of Texas at Austin (1990)Google Scholar
  14. 14.
    R.J.M. Zwiers, S. Gogolewski, A.J. Pennings, Polymer (Guildf) 24, 167 (1983). doi: 10.1016/0032-3861(83)90128-3 CrossRefGoogle Scholar
  15. 15.
    S.S. Kim, D.R. Lloyd, J. Membr. Sci. 64, 13 (1991). doi: 10.1016/0376-7388(91)80074-G CrossRefGoogle Scholar
  16. 16.
    D. Vorlander, Z. Phys. Chem. 105, 211 (1923)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Caleb V. Funk
    • 1
  • Patrick L. Hanks
    • 1
  • Kelsie J. Kaczorowski
    • 1
  • Douglas R. Lloyd
    • 1
  1. 1.Department of Chemical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations