Advertisement

Journal of Porous Materials

, Volume 16, Issue 3, pp 307–314 | Cite as

Hydrothermal synthesis of aluminum-substituted titanosilicate, ETS-10

  • S. D. Kim
  • S. H. Noh
  • Y. C. Kim
  • J. Y. Hwang
  • J. Y. Jung
  • Sung Churl Yi
  • W. J. Kim
Article

Abstract

One of ETS-10 variants, aluminum-substituted ETAS-10 was successfully synthesized with Al/Ti molar ratio of 0.1–0.4 using different titanium sources, titanium sulfate (Ti(SO4)2) and titanium oxysulfate (TiOSO4). Through the compositional study, like ETS-10, the (Na + K)/Na molar ratio significantly affects the crystallinity and phase purity depending on titanium source. The 23 factorial designs indicate that the high alkalinity mainly by Na+ content is very critical to the crystallization of pure ETAS-10 while the content of K+ cation should be carefully controlled. It suggests that the increase in K+ content with smaller hydrated radius than of Na+ makes the formation of ETAS-10 structure difficult. The optimum composition was chosen and applied to kinetic study. The activation energies for three different stages, nucleation, transition and crystallization were calculated using the modified Avrami–Erofeev equation. This result indicates that the nucleation and transition stage proceed at the similar rate, and then the crystallization stage proceeds with lower activation energy than those of previous two stages. In addition, the temperature dependency on the crystallization was quite significant, favoring high temperature.

Keywords

ETS-10 ETAS-10 Titanium source Kinetic study Compositional study 

Notes

Acknowledgement

This research program was financially supported through General Research Grant No. R01-2007-000-20364-0 of KOSEF.

References

  1. 1.
    S.M. Kuznicki, US Patent. 4,853,202, 1989Google Scholar
  2. 2.
    S.M. Kuznicki, US Patent 4,938,939, 1990Google Scholar
  3. 3.
    S.M. Kuznicki, EU Patent 0,457,988A1, 1991Google Scholar
  4. 4.
    L. Al-Attar, A. Dyer, R. Blackburn, J. Radioanal. Nucl. Chem. 246, 451 (2000)CrossRefGoogle Scholar
  5. 5.
    L. Al-Attar, A. Dyer, A. Pajanen, R. Harjula, J. Mater. Chem. 13, 2969 (2003)CrossRefGoogle Scholar
  6. 6.
    C.C. Pavel, D. Vuono, A. Nastro, J.B. Nagy, N. Bilba, Stud. Surf. Sci. Catal. 142, 295 (2002)CrossRefGoogle Scholar
  7. 7.
    S.M. Kuznicki, R.J. Madon, G.S. Koermer, K.A. Thrush, Euro Patent 0,405,978A1, 1991Google Scholar
  8. 8.
    S.M. Kuznicki, A.K. Thrush, WO 91/18833, 1991Google Scholar
  9. 9.
    M.W. Anderson, J. Rocha, Z. Lin, A. Philippou, I. Orion, A. Ferreira, Micropor. Mater. 6, 195 (1996)CrossRefGoogle Scholar
  10. 10.
    J. Rocha, Z. Lin, A. Ferreira, M.W. Anderson, J. Chem. Soc. Chem. Commun., 867 (1995) Google Scholar
  11. 11.
    Z. Lin, J. Rocha, A. Ferreira, M.W. Anderson, Coll. Surf. 179, 133 (2001)CrossRefGoogle Scholar
  12. 12.
    L. Lv, F. Su, X.S. Zhao, Micropor. Mesopor. Mater. 101, 355 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Rocha, A. Ferreira, Z. Lin, M.W. Anderson, Micropor. Mesopor. Mater. 23, 253 (1998)CrossRefGoogle Scholar
  14. 14.
    S.D. Kim, S.H. Noh, K.H. Seong, W.J. Kim, Micropor. Mesopor. Mater. 72, 185 (2004)CrossRefGoogle Scholar
  15. 15.
    W.J. Kim, M.C. Lee, J.C. Yoo, D.T. Hayhurst, Micropor. Mesopor. Mater. 41, 79 (2000)CrossRefGoogle Scholar
  16. 16.
    S.H. Noh, S.D. Kim, Y.J. Chung, J.W. Park, D.K. Moon, D.T. Hayhurst, W.J. Kim, Micropor. Mesopor. Mater. 88, 197 (2006)CrossRefGoogle Scholar
  17. 17.
    W.J. Kim, S.D. Kim, H.S. Jung, D.T. Hayhurst, Micropor. Mesopor. Mater. 56, 89 (2002)CrossRefGoogle Scholar
  18. 18.
    M.W. Anderson, A. Philippou, Z. Lin, A. Ferreira, J. Rocha, Angew. Chem. Int. Ed. Engl. 34, 1003 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. D. Kim
    • 1
  • S. H. Noh
    • 1
  • Y. C. Kim
    • 1
  • J. Y. Hwang
    • 1
  • J. Y. Jung
    • 1
  • Sung Churl Yi
    • 2
  • W. J. Kim
    • 1
  1. 1.Department of Materials Chemistry and Engineering, College of EngineeringKon Kuk UniversitySeoulSouth Korea
  2. 2.Department of Chemical Engineering, College of EngineeringHan Yang UniversitySeoulSouth Korea

Personalised recommendations