Journal of Porous Materials

, Volume 15, Issue 6, pp 673–677 | Cite as

Internal friction of capsule-free HIPed porous alumina

  • Tetsu Takahashi
  • Koji Matsumaru
  • Kozo Ishizaki


Porous alumina were sintered by conventional sintering and capsule-free Hot Isostatic Pressing (HIPing), at temperatures between 800 and 1500 °C under pressures 0.1 MPa or 200 MPa for 1 h or 50 h. Young’s modulus and internal friction of samples were measured by resonance method. The results show that Young’s modulus is mainly dominated by porosity of material. Capsule-free HIPed porous materials have slightly higher Young’s modulus than conventionally sintered ones at the same porosity. Internal friction is governed by both porosity and specific surface area. Capsule-free HIPed porous alumina has lower internal friction coefficient than conventionally sintered ones at the similar porosity or at the similar specific surface area. Enhanced surface-self diffusion under high gas pressure reduces internal friction coefficient, and affects internal friction more than Young’s modulus.


Porous alumina Internal friction Capsule-free HIP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ishizaki, S. Okada, T. Fujikawa, A. Takata, U.S. Patent 5,126,103, 30 June 1992Google Scholar
  2. 2.
    M. Nanko, K. Ishizaki, Phys. Rev. B 56, 6965 (1997) CrossRefGoogle Scholar
  3. 3.
    A. Takata, K. Ishizaki, Y. Kondo, T. Shioura, in Pressure Effects on Materials Processing and Design, ed. by K. Ishizaki, E. Hodge, M. Concannon (Materials Research Society, Pittsburgh, 1992), p.␣133Google Scholar
  4. 4.
    Y. Kinemuchi, N. Fusamune, A. Takata, K. Ishizaki, J. Ceramic Soc. Japan 106, 435 (1998)Google Scholar
  5. 5.
    A. Rytter, R. Brincker, P.H. Kirkegaard, Fracture & Dynamics, paper No. 37, Department of Building Technology and Structural Engineering, University of Aalborg, Denmark (1992) p. 76Google Scholar
  6. 6.
    O.T. Sidorov, A.F. Rakshin, Strength Mater. 15, 858 (1983)CrossRefGoogle Scholar
  7. 7.
    H. Ogi, K. Takashima, H. Ledbetter, M.L. Dunn, G. Shimoike, M. Hirano, P. Bowen, Acta Materialia 47, 2787 (1999)CrossRefGoogle Scholar
  8. 8.
    R. Chandra, S.P. Singh, K. Gupta, Comp. Struct. 46, 41 (1999)CrossRefGoogle Scholar
  9. 9.
    K. Matsushita, S. Kuratani, T. Okamoto, M. Shimada, J. Mater. Sci. Lett. 3, 345 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tetsu Takahashi
    • 1
  • Koji Matsumaru
    • 1
  • Kozo Ishizaki
    • 1
  1. 1.Department of Materials Science and Engineering Nagaoka University of TechnologyNiigataJapan

Personalised recommendations