Journal of Porous Materials

, Volume 15, Issue 6, pp 647–651 | Cite as

Enhanced electrochemical properties of polyaniline-coated multiwall carbon nanotubes

  • Wei Xing
  • Shuping Zhuo
  • Hongyou Cui
  • Weijiang Si
  • Xiuli Gao
  • Zifeng Yan


MWNT (multiwall carbon nanotubes) was coated by using in-situ chemical polymerization of aniline monomer. Structure characterizations, such as N2 adsorption analysis and transmission electron microscopy, demonstrate that a thin layer of PANI (polyaniline) is well coated on the pore surface of MWNT. As evidenced by constant current charge-discharge test, specific capacitance of PANI-coated MWNT increases by a factor of 5 due to the incorporation of PANI onto the pore surface of MWNT. However, the capacitive behavior deteriorated due to the narrower pore size and extra faradiac resistance derived from PANI.


Conducting polymer Faradiac reaction Charge storage Cyclic voltammetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Natural Science Foundation of Shandong Province (No.2003zx04), Sci-Tech Fund of Shandong University of Technology (No. 2006KJM17), Doctor Start-up Fund of Shandong University of Technology, and Initiative Research Group Fund of Shandong University of Technology.


  1. 1.
    B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park, J.H. Han, Chem. Phys. Lett. 388, 170 (2004)CrossRefGoogle Scholar
  2. 2.
    Q.L. Chen, K.H. Xue, W. Shen, F.F. Tao, S.Y. Yin, W. Xu, Electrochim. Acta. 49, 4157 (2004)CrossRefGoogle Scholar
  3. 3.
    K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta. 49, 515 (2004)CrossRefGoogle Scholar
  4. 4.
    E. Frackowiak, F. Beguin, Carbon 39, 937 (2001)CrossRefGoogle Scholar
  5. 5.
    V. Gupta, N. Miura, J. Power Sources 157, 616 (2006)CrossRefGoogle Scholar
  6. 6.
    E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, J.␣Power Sources 153, 413 (2006)CrossRefGoogle Scholar
  7. 7.
    H.H. Zhou, H. Chen, S.L. Luo, G.W. Lu, W.Z. Wei, Y.F. Kuang, J. Solid State Electr. 9, 574 (2005)CrossRefGoogle Scholar
  8. 8.
    V. Khomenko, E. Frackowiak, F. Beguin, Electrochim. Acta 50, 2499 (2005)CrossRefGoogle Scholar
  9. 9.
    Y.K. Zhou, B.L. He, W.J. Zhou, J. Huang, X.H. Li, B. Wu, H.L. Li, Electrochim. Acta 49 257 (2004)CrossRefGoogle Scholar
  10. 10.
    Y.K. Zhou, B.L. He, W.J. Zhou, H.L. Li, J. Electrochem. Soc. 151 A1052 (2004)CrossRefGoogle Scholar
  11. 11.
    B.K. Zhu, S.H. Xie, Z.K. Xu, Y.Y. Xu, Compos. Sci. Technol. 66, 548 (2006)CrossRefGoogle Scholar
  12. 12.
    V. Khomenko, E. Frackowiak, F. Beguin, Electrochim. Acta 50 2499 (2005)CrossRefGoogle Scholar
  13. 13.
    Q.F. Xiao, X. Zhou, Electrochim. Acta 48 575 (2003)CrossRefGoogle Scholar
  14. 14.
    M.J. Bronikowski, Carbon 44 2822 (2006)CrossRefGoogle Scholar
  15. 15.
    K. Kuwana, T.X. Li, K. Saito, Chem. Eng. Sci. 61, 6718 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Perez, H. Armendariz, J.A. Toledo, A. Vazquez, J. Navarrete, A. Montoya, A. Garcia, J. Mol. Catal. A-Chem. 149, 169 (1999)CrossRefGoogle Scholar
  17. 17.
    D. Qu, J. Power Sources 99 1 (2002)Google Scholar
  18. 18.
    J. Prokes, M. Trchova, D. Hlavata, J. Stejskal, Polym. Degrad. Stabil. 78, 393 (2002)CrossRefGoogle Scholar
  19. 19.
    S. Jayanty, G.K. Prasad, B. Sreedhar, T.P. Radhakrishnan, Polymer 44 7265 (2003)CrossRefGoogle Scholar
  20. 20.
    C.A. Grimesa, E.C. Dickey, C. Mungle, K.G. Ong, D. Qian, J. Applied Physics 90 4134 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wei Xing
    • 1
  • Shuping Zhuo
    • 1
  • Hongyou Cui
    • 1
  • Weijiang Si
    • 1
  • Xiuli Gao
    • 1
  • Zifeng Yan
    • 2
  1. 1.School of Chemical EngineeringShandong University of TechnologyZiboChina
  2. 2.State Key Laboratory for Heavy Oil, Key Laboratory of Catalysis, CNPCChina University of PetroleumDongyingChina

Personalised recommendations