Journal of Porous Materials

, Volume 15, Issue 2, pp 163–169 | Cite as

Mesoporous silica supported cobalt oxide catalysts for catalytic removal of benzene

  • Jinjun Li
  • Xiuyan Xu
  • Zhengping Hao
  • Wei Zhao


Two types of mesoporous silica SBA-15 with different pore diameter were synthesized with an ageing temperature of 373 K and an ageing temperature of 308 K, respectively; in addition, mesoporous silica with amorphous structure was synthesized by adding organosiloxane as part of the silica source during the synthesis procedure. Mesoporous silica and conventional alumina supported cobalt oxide catalysts were prepared by incipient wetness impregnation method. These materials were characterized by FT-IR, nitrogen adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Temperature programmed reduction (TPR) techniques, and the activity of the supported cobalt oxide catalysts for deep oxidation of benzene were evaluated in a fixed-bed reactor. It seems that the pore diameter of the silica increase with the elevation of the ageing temperature. Mesoporous silica supported cobalt oxide catalysts are more active than conventional alumina supported ones. Cobalt oxide can be relatively better dispersed on the surface of mesoporous silica which has larger pore diameter and surface areas. Meanwhile, more silanol groups exist on the surface of amorphous silica, which could induce a strong interaction with the supported cobalt oxide species, leading to poor activity for benzene oxidation.


Mesoporous silica SBA-15 Cobalt oxide catalyst VOCs Catalytic oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support from the National Basic Research Program of China (No.2004CB719500), the Knowledge Innovation Funds of the Chinese Academy of Sciences (No.KZCX3-SW-430), the Chinese Natural Science Foundation (No. 20322201) and the Asian Regional Research Program on Environmental Technology (ARRPET) sponsored by the Swedish International Development for Research Cooperation Agency (Sida) are gratefully acknowledged.


  1. 1.
    J.A. Horsley, Catalytic Environmental Report E4, (Catalytic Studies Division, Mountain View, CA, USA, 1993)Google Scholar
  2. 2.
    J.J. Spivey, Ind. Eng. Chem. Res. 26, 2165 (1987)CrossRefGoogle Scholar
  3. 3.
    G. Centi, P. Ciambelli, S. Perathoner, P. Russo, Catal. Today 75, 3 (2002)CrossRefGoogle Scholar
  4. 4.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S Beck, Nature 359, 710 (1992)CrossRefGoogle Scholar
  5. 5.
    J.S. Beck, C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  6. 6.
    D. Zhao, Q. Huo, J. Feng, B.F. Chemlka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)CrossRefGoogle Scholar
  7. 7.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chemlkav, G.D. Stucky, Science 279, 548 (1998)CrossRefGoogle Scholar
  8. 8.
    X. Xu, J. Li, Z. Hao, W. Zhao, C. Hu, Mater. Res. Bull. 41, 406 (2006)CrossRefGoogle Scholar
  9. 9.
    Y.-S. Chi, H.-P. Lin, C.-Y. Mou, Appl. Catal. A 284, 199 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Martínez, C. López, F. Márquez, I. Díaz, J. Catal. 220, 486 (2003)CrossRefGoogle Scholar
  11. 11.
    A.Y. Khodakov, R. Bechara, A. Griboval-Constant, Appl. Catal. A 254, 273 (2003)CrossRefGoogle Scholar
  12. 12.
    P. Wu, T. Tatsumi, Chem. Mater. 14, 1657 (2002)CrossRefGoogle Scholar
  13. 13.
    M.S. Wong, H.C Huang, J.Y. Ying, Chem. Mater. 14, 1961 (2002)CrossRefGoogle Scholar
  14. 14.
    G.A. Eimer, L.B. Pierella, G.A. Monti, O.A. Anunizata, Catal. Lett. 78, 65 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Li, X. Xu, Z. Jiang, Z. Hao, C. Hu, Environ. Sci. Technol. 39, 1319 (2005)CrossRefGoogle Scholar
  16. 16.
    K.S.W. Sing, D.H. Evrett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouqerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  17. 17.
    M. Kruk, M. Jaroniec, Chem. Mater. 12, 1961 (2000)CrossRefGoogle Scholar
  18. 18.
    W. Zhang, J. Lu, B. Han, M. Li, J. Xiu, P. Ying, C. Li, Chem. Mater. 14, 3413 (2002)CrossRefGoogle Scholar
  19. 19.
    D. Schanke, A.M. Hilmen, E. Bergene, K. Kinnari, E. Rytter, E. Adnanes, A. Holmen, Energy Fuels, 10, 867 (1996)CrossRefGoogle Scholar
  20. 20.
    Q. Tang, Q. Zhang, P. Wang, H. Wan, Chem. Mater. 16, 1967 (2004)CrossRefGoogle Scholar
  21. 21.
    P. Concepcion, C. Lopez, A. Martinez, V.F. Puntes, J. Catal. 228, 321 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Li, J. Lin, H.C. Zeng, J. Phys. Chem. B 104, 1783 (2000)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, J. Chen, J. Ren, Y. Sun, Appl. Catal. A 243, 121 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations