Journal of Porous Materials

, Volume 15, Issue 2, pp 151–157 | Cite as

Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: effect of surface chemistry

  • Chang Yu
  • Jie Shan Qiu
  • Yu Feng Sun
  • Xian Hui Li
  • Gang Chen
  • Zong Bin Zhao


Commercial coconut-based activated carbons (AC), before and after being treated using 65 wt% HNO3 at different temperatures (termed as AC–Hs), were used as adsorbents to remove thiophene (T) or dibenzothiophene (DBT) from model oils. The fresh AC sample and all of the AC–Hs samples were characterized by Boehm titration, Fourier-transform infrared spectroscopy, and thermal analysis, which yield the information of the surface chemistry properties of the carbon materials. The results show that in comparison to the fresh AC sample, the quantity of oxygen-containing functional groups on the surface of AC–Hs samples increases as the pretreatment temperature of the fresh AC sample increases. The adsorption capabilities of the AC samples for removal of T and DBT from model oils were evaluated in a batch-type reactor. It has been found that the refractory DBT can be removed easily over the untreated commercial AC with the removal efficiency even being higher than that of T. In the case of acid modified AC–Hs samples, the efficiency for removal of T has been greatly improved, but this is not the case for the removal of DBT. The possible mechanism for adsorption removal of T and DBT over activated carbons is discussed in terms of the quantity of surface oxygen-containing functional groups of adsorbents and the chemical structure of sulfur compounds. The effect of olefin (1-octene) and aromatic hydrocarbons (benzene) in the model oils on the selective adsorption DBT over AC is also evaluated, revealing that in the case of DBT, the competitive adsorption is involved in the process, and the removal efficiency levels off at a level over 80%.


Activated carbon Acid modification Adsorption desulfurization Thiophene Dibenzothiophene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partly supported by the National Basic Research Program of China (Nos. 2003CB615806, G2005CB221203), the Program for New Century Excellent Talents in Universities supported by the Education Ministry of China (NCET-04-0274), and Fellowship for Talented Young Scientists supported by the Natural Science Foundation of Liaoning Province of China (No. 3040009).


  1. 1.
    R.J. Farrauto, C.H. Bartholomew, Fundamentals of Industrial Catalytic Processes (Chapman and Hall, New York, 1997)Google Scholar
  2. 2.
    J. Weitkamp, M. Schwark, S. Ernest, J. Chem. Soc. Chem. Commun. 1133 (1991)Google Scholar
  3. 3.
    R.T. Yang, A. Takahashi, F.H. Yang, Ind. Eng. Chem. Res. 40, 6236 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Takahashi, F.H. Yang, R.T. Yang, Ind. Eng. Chem. Res. 41, 2487 (2002)CrossRefGoogle Scholar
  5. 5.
    M.A. Larrubia, A. Gutièrrez-Alejandre, J. Ramìrez, G. Busca, Appl. Catal. A Gen. 224, 167 (2002)CrossRefGoogle Scholar
  6. 6.
    A.B.S.H. Salem, H.S. Hamid, Chem. Eng. Technol. 20, 342 (1997)CrossRefGoogle Scholar
  7. 7.
    S.H.D. Lee, R. Kumar, M. Krumpelt, Sep. Purif. Technol. 26, 247 (2002)CrossRefGoogle Scholar
  8. 8.
    X.L. Ma, L. Sun, C.S. Song, Catal. Today 77, 107 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Gil, G. de la Puente, P. Grange, Microporous Mater. 12, 51 (1997)CrossRefGoogle Scholar
  10. 10.
    P.L. Walker, P.A. Thrower, Chemistry and Physics of Carbon (Marcel Dekker, New York, 1981), p. 1Google Scholar
  11. 11.
    D.D. Whitehurst, T. Isoda, I. Mochida, Adv. Catal. 42, 345 (1998)Google Scholar
  12. 12.
    H.P. Boehm, E. Diehl, W. Heck, R. Sappok, Angew. Chem., Int. Ed. Engl. 3, 669 (1964)CrossRefGoogle Scholar
  13. 13.
    C. Yu, J.S. Qiu, Y.F. Sun, X.H. Li, J. Fuel Chem. Technol. (in Chinese), 35, 121 (2007)Google Scholar
  14. 14.
    H.P. Boehm, Adv. Catal. 16, 179 (1966)CrossRefGoogle Scholar
  15. 15.
    H.P. Boehm, G. Bewer, In Proc. 4th Inter. London Carbon and Graphite Conf. 344 (1974)Google Scholar
  16. 16.
    C.A. León, Y. León, L.R. Radovic, Chem. Phys. Carbon 24, 213 (1992)Google Scholar
  17. 17.
    J.S. Qiu, B.Y. Wang, Z.Y. Deng, Carbon Tech. 4, 11 (1996)Google Scholar
  18. 18.
    T.J. Bandosz, J. Jagiello, K. Putyera, T.A. Schwarz, J. Chem. Soc. Faraday Trans. 90, 3573 (1994)CrossRefGoogle Scholar
  19. 19.
    S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, Carbon 35, 1799 (1997)CrossRefGoogle Scholar
  20. 20.
    P.A. Thrower, Chemistry, Physics of Carbon (Dekker, New York, 1989), p. 147Google Scholar
  21. 21.
    P.E. Fanning, M.A. Vannice, Carbon 31, 721 (1993)CrossRefGoogle Scholar
  22. 22.
    C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marín, Carbon 38, 1995 (2000)CrossRefGoogle Scholar
  23. 23.
    Y.F. Jia, K.M. Thomas, Langmuir 16, 1114 (2000)CrossRefGoogle Scholar
  24. 24.
    C.T. Hsieh, H.S. Teng, Carbon 38, 863 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Biniak, M. Pakuła, G.S. Szymański, A. Świątkowski, Langmuir 15, 6117 (1999)CrossRefGoogle Scholar
  26. 26.
    S. Bashkova, A. Bagreev, T.J. Bandosz, Environ. Sci. Technol. 36, 2777 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Bagreev, S. Bashkova, T.J. Bandosz, Langmuir 18, 1257 (2002)CrossRefGoogle Scholar
  28. 28.
    J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37, 1379 (1999)CrossRefGoogle Scholar
  29. 29.
    U. Zielke, K.J. Hüttinger, W.P. Hoffman, Carbon 34, 983 (1996)CrossRefGoogle Scholar
  30. 30.
    Y. Sano, K-H. Choi, I. Mochida, Energy Fuels, 18, 644 (2004)CrossRefGoogle Scholar
  31. 31.
    B. Marchon, J. Carrazza, H. Heinemann, G.A. Somorjai, Carbon 26, 507 (1988)CrossRefGoogle Scholar
  32. 32.
    Y. Otake, R.G. Jenkins, Carbon 31, 109 (1993)CrossRefGoogle Scholar
  33. 33.
    Z.X. Jiang, Y. Liu, X.P. Sun, F.P. Tian, F.X. Sun, C.H. Liang, W.S. You, C.R. Han, C. Li, Langmuir 19, 731 (2003)CrossRefGoogle Scholar
  34. 34.
    P.A. Thrower, Chemistry, Physics of Carbon (Marcel Dekker, New York, 1994), p. 213Google Scholar
  35. 35.
    K. Hashimoto K. Matzuo H. Kominami Y. Kera, J. Chem. Soc. Faraday Trans. 93, 3729 (1997)CrossRefGoogle Scholar
  36. 36.
    S. Velu, X.L. Ma, C.S. Song, M. Namazian, S. Sethuraman, G. Venkataraman, Energy Fuels 19, 1116 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chang Yu
    • 1
  • Jie Shan Qiu
    • 1
    • 2
  • Yu Feng Sun
    • 1
  • Xian Hui Li
    • 1
  • Gang Chen
    • 1
  • Zong Bin Zhao
    • 1
  1. 1.Carbon Research Laboratory, State Key Lab of Fine Chemicals, School of Chemical Engineering, Center for Nano Materials and ScienceDalian University of TechnologyDalianChina
  2. 2.Key Laboratory for Micro/Nano Technology and System of Liaoning ProvinceDalian University of TechnologyDalianChina

Personalised recommendations