Journal of Porous Materials

, Volume 15, Issue 3, pp 265–270 | Cite as

Submicron mesoporous carbon spheres by ultrasonic emulsification

  • N. Tonanon
  • W. Intarapanya
  • W. Tanthapanichakoon
  • H. Nishihara
  • S. R. Mukai
  • H. Tamon


In this work submicron mesoporous carbon spheres with the BET surface area of 510–610 m2/g and the mesopore volume of 0.86 cm3/g can be firstly obtained from carbonization of resorcinol-formaldehyde (RF) submicron spheres which are prepared from water-in-oil emulsification with span80 and ultrasonic dispersion followed by freeze drying and pyrolysis. Moreover, surface texture and mesoporous properties can be obviously changed by ultrasonic emulsification. By using ultrasonic emulsification, more number and much smaller size submicron carbon spheres can be observed compared to homogenized and mechanically stirred emulsifications.


Submicron mesoporous carbon sphere Ultrasonic emulsification Resorcinol formaldehyde carbon gel Freeze drying Nitrogen adsorption Scanning electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was partially supported by the Thai Government (Matching Fund), the Thailand Research Fund (Senior Researcher Scholarship), Thai-Japan Technology Transfer Project (TJTTP)/Chulalongkorn University, Metal and Meterials Research Institute/Chulalongkorn University, Silver Jubilee Research Fund/Chulalongkorn University, National Metal and Meterials Technology Center (Thailand). N.T. would like to thank Mr. Preecha Sangtherapitikul for special guidance.


  1. 1.
    R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)CrossRefGoogle Scholar
  2. 2.
    T. Yamamoto, T. Sugimoto, T. Suzuki, S.R. Mukai, H. Tamon, Carbon 40, 1345 (2002)CrossRefGoogle Scholar
  3. 3.
    N. Tonanon, W. Tanthapanichakoon, T. Yamamoto, H. Nishihara, S.R. Mukai, H. Tamon, Carbon 41, 2981 (2003)CrossRefGoogle Scholar
  4. 4.
    T. Horikawa, J. Hayashi, K. Muroyama, Carbon 42, 169 (2004)CrossRefGoogle Scholar
  5. 5.
    E. Frackowiak, F. Béguin, Carbon 39, 937 (2001)CrossRefGoogle Scholar
  6. 6.
    B. Abismaïl, J.P. Canselier, A.M. Wilhelm, H. Delmas, C. Gourdon, Ultrason. Sonochem. 6, 75 (1999)CrossRefGoogle Scholar
  7. 7.
    Q. Wang, H. Xia, Y. Liao, X. Xu, S.M. Baxter, R.V. Slone, et al., Polym. Int. 50, 1252 (2001)CrossRefGoogle Scholar
  8. 8.
    Q. Wang, H. Xia, Y. Liao, X. Xu, S.M. Baxter, R.V. Slone et al., J. Polym. Sci. PartA 39, 3356 (2001)CrossRefGoogle Scholar
  9. 9.
    S.K. Ooi, S. Biggs, Ultrason. Sonochem. 7, 125 (2000)CrossRefGoogle Scholar
  10. 10.
    K.S. Suslick, G.J. Price, Annu. Rev. Mater. Sci. 29, 295 (1999)CrossRefGoogle Scholar
  11. 11.
    N. Tonanon, A. Siyasukh, W. Tanthapanichakoon, H. Nishihara, S.R. Mukai, H. Tamon, Carbon 43, 525 (2005)CrossRefGoogle Scholar
  12. 12.
    D. Dollimore, G.R. Heal, J. Appl. Chem. 14, 109 (1964)CrossRefGoogle Scholar
  13. 13.
    G.J. Price, A.J. White, A.A. Clifton, Polymer 36, 4919 (1995)CrossRefGoogle Scholar
  14. 14.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 37, 2049 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • N. Tonanon
    • 1
  • W. Intarapanya
    • 1
  • W. Tanthapanichakoon
    • 2
  • H. Nishihara
    • 3
  • S. R. Mukai
    • 3
  • H. Tamon
    • 3
  1. 1.Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.National Nanotechnology CenterKlong Luang, PathumthaniThailand
  3. 3.Department of Chemical Engineering, Graduate School of EngineeringKyoto UniversityKatsura, KyotoJapan

Personalised recommendations