Journal of Porous Materials

, Volume 14, Issue 3, pp 315–323 | Cite as

Synthesis and framework topology of the new disordered ERS-10 zeolite

  • S. Zanardi
  • G. Cruciani
  • L. C. Carluccio
  • G. Bellussi
  • C. Perego
  • R. Millini


The synthesis and crystal structure of the microporous crystalline aluminosilicate ERS-10 are here described. The zeolite was synthesized using a 6-azonia-spiro-[5,5]-undecane hydroxide as structure directing agent (SDA), tetraethylorthosilicate (TEOS) and aluminium-isopropoxide (AiP) as silica and aluminum sources, respectively. ERS-10 is characterized by a relatively narrow field of existence, since the unselective SDA used favors the crystallization of other zeolite phases (MTW, MOR, Beta). Crystallization of pure ERS-10 requires the hydrothermal treatment at 443 K for at least 240 h of a gel with the following composition: SiO2/Al2O3 = 80–160, SDA/SiO2 = 0.2–0.3, H2O/SiO2 close to 45. Preliminary low resolution powder X-ray characterization revealed that the material is affected by structural disorder such as stacking faults; however the comparison of the powder pattern, and the analysis of the cell parameters obtained by indexing the sharp reflections, suggested a close correlation among ERS-10 and NU-87 (IZA code NES), EU-1 (IZA code EUO) and nonasil (IZA code NON) type zeolites. Starting from this base, using an extensively model building and the program DIFFaX, we were able to demonstrate that the new zeolite material ERS-10 is an intergrowth of three structurally related zeolite with the NON, EUO and NES framework topology.


ERS-10 Zeolites Intergrowth structure X-ray diffraction Azonia-spiro compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Ministero della Università e della Ricerca Scientifica e Tecnologica is thanked for the financial support to the research program “Zeolites, materials of interest for industry and environment: synthesis, crystal structure, stability and applications.” (COFIN 2001).

The authors thank the European Synchrotron Radiation Facility (ESRF) for providing beam time under the public beamtime programme (experiment number CH-1326). Special thanks to SNBL staff for the kind assistance during data collections.


  1. 1.
    L. Carluccio, R. Millini, G. Bellussi, Eur. Patent 796, 821 (1997)Google Scholar
  2. 2.
    R. Millini, L. Carluccio, F. Frigerio, W.O. Parker Jr., G. Bellussi, Microporous Mesoporous Mater. 24, 199 (1998)CrossRefGoogle Scholar
  3. 3.
    S. Amarilli, L. Carluccio, C. Perego, G. Bellussi, US Patent 6, 005–152 (1999)Google Scholar
  4. 4.
    L. Zanibelli, M. Ferrari, L. Carluccio, Eur. Pat. 1, 013–339 (1999)Google Scholar
  5. 5.
    C. Perego, M. Margotti, L. Carluccio, L. Zanibelli, G. Bellussi, in Zeolites and Mesoporous Materials at the Dawn of the 21st Century, Stud. Surf. Sci. Catal. vol. 135, ed. by A. Galarneau, F. Di Renzo, F. Fajula and J. Vedrine, (Elsevier, Amsterdam, 2001) paper 25-0-03Google Scholar
  6. 6.
    G. Perego, M. Cesari, G. Allegra, J. Appl. Crystallogr. 17, 403 (1984)CrossRefGoogle Scholar
  7. 7.
    J.M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B. De Gruyter, Proc. R. Soc. London A 420, 375 (1988)Google Scholar
  8. 8.
    J.B. Higgins, R.B. LaPierre, J.L. Schlenker, A.C. Rohrman, J.D. Wood, G.T. Kerr, W.J. Rohrbaugh, Zeolites 8, 446 (1988)CrossRefGoogle Scholar
  9. 9.
    R.F. Lobo, H. van Koningsveld, J. Am. Chem. Soc. 124, 13222 (2002)CrossRefGoogle Scholar
  10. 10.
    M.M.J. Treacy, D.E.W. Vaughan, K.G. Strohmaier, J.M. Newsam, Proc. R. Soc. London, Ser. A 452, 813 (1996)Google Scholar
  11. 11.
    R.F. Lobo, M. Pan, I. Chan, R.C. Medrud, S.I. Zones, P.A. Crozier, M.E. Davis, J. Phys. Chem. 98, 12040 (1998)CrossRefGoogle Scholar
  12. 12.
    G .Perego, G. Bellussi, A. Carati, R. Millini, V. Fattore, in “Zeolite SynthesisACS Symposium Series no. 398 (M.L. Occelli and H.E. Robson eds) American Chemical Society, Washington DC, pp. 360–373.(1989)Google Scholar
  13. 13.
    S. Zanardi, G. Cruciani, L.C. Carluccio, G. Bellussi, C. Perego, R. Millini, Angew. Chem. Int. Ed. 41, (21), 4109 (2002)CrossRefGoogle Scholar
  14. 14.
    B. Marler, H. Gies, Zeolites 15, 517 (1995)CrossRefGoogle Scholar
  15. 15.
    M.M.J Treacy, J.M. Newsam, M.W. Deem, Proc. R. Soc. London A, 433, 499 (1991)CrossRefGoogle Scholar
  16. 16.
    N.A. Briscoe, D.W. Johnson, M.D. Shannon, G.T. Kokotailo, L.B. McCuster, Zeolites 8, 74 (1988)CrossRefGoogle Scholar
  17. 17.
    A. Alberti, G. Vezzalini, E. Galli, S. Quartieri, Eur. J. Mineral. 8, 69 (1996)Google Scholar
  18. 18.
    M. Yoshikawa, P. Wagner, M. Lovallo, K. Tsuji, T. Takewaki, C.Y. Chen, C. Jones, M. Tsapatsis, S.I. Zones, M.E. Davis, J. Phys. Chem. B. 102, 7139 (1998)CrossRefGoogle Scholar
  19. 19.
    T. Wessels, Ch. Baerlocher, L.B. McCusker, E.J. Creyghton, J. Am. Chem. Soc. 121, 6242 (1999)CrossRefGoogle Scholar
  20. 20.
    Database of Zeolite Structures, Scholar
  21. 21.
    C. Perego, S. Amarilli, R. Millini, G. Bellussi, G. Girotti, G. Terzoni, Microporous Mater 6, 395 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Zanardi
    • 1
    • 2
  • G. Cruciani
    • 1
  • L. C. Carluccio
    • 3
  • G. Bellussi
    • 3
  • C. Perego
    • 3
  • R. Millini
    • 3
  1. 1.Sezione di Mineralogia, Petrologia e Geofisica, Dipartimento Scienze della TerraUniversità degli Studi di FerraraFerraraItaly
  2. 2.Refining & Marketing DivisionEni S.p.A.San Donato Milanese MilanoItaly
  3. 3.EniTecnologie S.p.A.San Donato Milanese MilanoItaly

Personalised recommendations