Advertisement

Journal of Porous Materials

, Volume 15, Issue 1, pp 29–34 | Cite as

Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels

  • Dingcai Wu
  • Ruowen Fu
Article

Abstract

In this paper, we investigated the requirements of organic gels for a successful ambient pressure drying by analyzing the role of the strength, the pore size and the surfactant of organic gels in decreasing the drying shrinkage of organic aerogels. Experimental results showed the effect of the decrease of the surface tension, resulting from the surfactant, on the drying shrinkage was very small and negligible. The drying shrinkage depended strongly on the strength and the pore size. Subsequently, the respective role of the strength and the pore size was evaluated. It can be found that the strength plays a greater role than the pore size.

Keywords

Carbon aerogel Surfactant Strength Pore size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Project of NNSFC(50472029), the Foundation of SRFDP, and the Team Project and Scientific Foundation of Guangdong (20003038, 2004A30404001).

References

  1. 1.
    M.S. Dresselhaus, Annu. Rev. Mater. Sci. 27, 1 (1997)CrossRefGoogle Scholar
  2. 2.
    C. Moreno-Castilla, F.J. Maldonado-Hódar, Carbon 43, 455 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Smirnova, X. Dong, H. Hara, A. Vasiliev, N. Sammes, Int. J. Hydrogen Energ. 30, 149 (2005)CrossRefGoogle Scholar
  4. 4.
    R. Fu, B. Zheng, J. Liu, M.S. Dresselhaus, G. Dresselhaus, J.H. Satcher, T.F. Baumann, Adv. Funct. Mater. 13, 558 (2003)CrossRefGoogle Scholar
  5. 5.
    D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 675 (2006)CrossRefGoogle Scholar
  6. 6.
    D. Wu, R. Fu, S. Zhang, M.S. Dresselhaus, G. Dresselhaus, Carbon 42, 2033 (2004)CrossRefGoogle Scholar
  7. 7.
    D. Wu, R. Fu, S. Zhang, M.S. Dresselhaus, G. Dresselhaus, J. Non-cryst. Solids 336, 26 (2004)CrossRefGoogle Scholar
  8. 8.
    G. Qin, S. Guo, Carbon 39, 1929 (2001)CrossRefGoogle Scholar
  9. 9.
    S.T. Mayer, L. James, and R.W. Pekala, US patent 5420168 (1995)Google Scholar
  10. 10.
    A. Léonard, N. Job, S. Blacher, J.P. Pirard, M. Crine, W. Jomaa, Carbon 43, 1808 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 37, 2049 (1999)CrossRefGoogle Scholar
  12. 12.
    D.F. Albert, G.R. Andrews, R.S. Mendenhall, J.W. Bruno, J. Non-Cryst. Solids 296, 1 (2001)CrossRefGoogle Scholar
  13. 13.
    W. Li, G. Reichenauer, J. Fricke, Carbon 40, 2955 (2002)CrossRefGoogle Scholar
  14. 14.
    D. Wu, R. Fu, J. Porous Mater. 12, 311 (2005)CrossRefGoogle Scholar
  15. 15.
    D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non-cryst. Solids 351, 915 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials Science Institute, PCFM laboratoryZhongshan (Sun Yat-Sen) UniversityGuangzhouP. R. China

Personalised recommendations