Skip to main content
Log in

Side-chain alkylation of 2,6-lutidine to 2,6-divinylpyridine over basic zeolites

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Synthesis of 2,6-divinylpyridine (2,6-DVP) and 2-methyl-6-vinylpyridine (2M6VP) was achieved for the first time by side-chain alkylation of 2,6-lutidine using formaldehyde (37 wt/v) as alkylating agent in heterogeneous conditions at atmospheric pressure, and at a reaction temperature of 300 °C over alkali and alkaline metal ion modified zeolites. A mixture of 2,6-divinylpyridine and 2-methyl,6-vinylpyridine were formed by the alkylation of the 2,6-lutidine over Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba metal ion modified zeolites. The catalytic activity of 2,6-lutidine was studied over various potassium metal ion modified zeolite molecular sieves like ZSM-5 (30), X, Y, mordenite and MCM-41. Alkali modified ZSM-5 (30) catalyst was found more active in side-chain alkylation of 2,6-lutidine when compared to other zeolites. Among all these catalysts studied K modified ZSM-5 (30) gave best conversion of 2,6-lutidine and selectivity to 2-methyl,6-vinylpyridine. K-ZSM-5 (30) catalyst was employed to study the reaction parameters like reaction temperature, weight hourly space velocity, molar ratio, and time on stream for 2,6-lutidine. The effect of potassium metal ion content and precursors of potassium ion on catalytic activity in side-chain alkylation of 2,6-lutidine was studied. The bifunctional catalyst is required containing medium or weak acidic centers and basic centers in the side-chain alkylation, which is understood through proposed mechanism. The selectivities of 2,6-DVP were 45.2, 40.0, and 30.7% at 73.4, 66.0 and 60.5% conversion at 300 °C from 2,6-lutidine and formaldehyde over K-ZSM-5 (30), Rb-ZSM-5 (30) and Cs-K-ZSM-5 (30), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Feast, J.A. Lercher, in Recent Advances and New Horizons in Zeolite Science and Technology (Studies in Surface Science and Technology, vol. 102), ed. by H. Chon, S.I. Woo, S.E. Park, (Elsevier, Amsterdam, 1996), pp. 363

  2. H. Hattori, Chem. Rev. 95, 537 (1995)

    Article  CAS  Google Scholar 

  3. D. Barthomeuf, Catal. Rev. 38, 521 (1996)

    Article  Google Scholar 

  4. C.B. Dartt, M.E. Davis, Catal. Today 19, 151 (1994)

    Article  CAS  Google Scholar 

  5. M.E. Davis, Acc. Chem. Res. 26, 111 (1993)

    Article  CAS  Google Scholar 

  6. P.N. Galich, I.T. Golubchenko, V.S. Gutyrya, V.G. Il’in, I.E. Neimark, Ukr. Khim. Zh. 31, 1117 (1965); Chem. Abstr. 64, 12571 (1966)

    Google Scholar 

  7. D.E. Bryant, W.L. Kranich, J. Catal. 8, 8 (1967)

    Article  CAS  Google Scholar 

  8. S. Kawakami, S. Takanashi, S. Fujh, Kogyo Kagaku Zasshi 74, 889 (1971)

    Google Scholar 

  9. P.N. Galich et al., Dokl. Akad. Nauk SSSR 161, 627 (1965)

    CAS  Google Scholar 

  10. P.B. Venuto, P.S. Landis, in Advances in Catalysis and Related Subjects, vol. 18, ed. by D.D. Eley, H. Pines, P.B. Weisz, (Academic, New York, 1968), p. 331

  11. C.H. Dartt, M.E. Davis, Catal. Today 19, 151 (1994)

    Article  CAS  Google Scholar 

  12. T. Yashima, K. Sato, N. Hara, J. Catal. 26, 303 (1972)

    Article  CAS  Google Scholar 

  13. D. Barthomeuf, Catal. Rev. Sci. Eng. 38, 521 (1996)

    Article  Google Scholar 

  14. P.E. Hathaway, M.E. Davis, J. Catal. 116, 263 (1989)

    Article  CAS  Google Scholar 

  15. H. Itoh, T. Hottori, K. Suzuki, A. Miyamoto, Y. Murakami, J. Catal. 72, 170 (1991)

    Article  Google Scholar 

  16. G. Madhavi, S.J. Kulkarni, K.V.V.S.B.S.R. Murthy, K.V. Raghavan, V. Viswanathan, Appl. Catal. A Gen. 246, 265 (2003) and references cited there in

  17. H. Itoh, A. Miyamotto, Y. Murakami, J. Catal. 64, 284 (1980)

    Article  CAS  Google Scholar 

  18. H. Itoh, T. Hattori, K. Suzuki, Y. Murakami, J. Catal. 79, 21 (1983)

    Article  CAS  Google Scholar 

  19. R.P. Alexander, M.A.W. Eaton, T.A. Millican, R.C.D. Titmas, (Celltech Ltd.) PCT Int. Appl. WO 88 05, 433 (cl. CO7D213/30), 28 July 1988; Chem. Abstr. 110 (1989) 212615u

  20. W.L.J. Jamison, A.J. Moscicki, (Thermoset Plastics. Inc) PCT Int. Appl. WO 9320, 562 (cl. HO1B1/02) US Appl. 863,452,03 1992; Chem. Abstr. 121 (1994) 48145v

  21. E.G. Martin, US 2,824,844 (1958); Chem. Abstr. 52, 9482i (1958)

  22. J. Michalski, K. Studniarski, Roczniki Chem. 29, 1141 (1955); Chem. Abstr. 51, 10530c (1957)

  23. R. Bodalski, J. Michalski, K. Studniarski, Roczniki Chem. 38(9), 1337 (1964); Chem. Abstr. 62, 1627c (1965)

  24. I.P. Belomestnykh, N.N. Rozhdestvenskaya, G.V. Isagulyants, Khim. Geterotsikl. Soedian. 6, 802 (1994); Chem. Abstr. 122, 31287r (1995)

    Google Scholar 

  25. J. Zhu, Y. Chun, Y. Wang, Q. Xu, Catal. Today 51, 103 (1999)

    Article  CAS  Google Scholar 

  26. D.E. Pearson, C.A. Buehler, Chem. Rev. 74(1), 45 (1974)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author G.M. is thankful to CSIR for Senior Research Fellowship and also thankful to Dr. M. Ramakrishna Prasad and Dr. K.V.V. Krishna Mohan for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhavi, G., Kulkarni, S.J. & Raghavan, K.V. Side-chain alkylation of 2,6-lutidine to 2,6-divinylpyridine over basic zeolites. J Porous Mater 14, 379–385 (2007). https://doi.org/10.1007/s10934-006-9030-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-9030-1

Keywords

Navigation