Journal of Porous Materials

, Volume 14, Issue 4, pp 379–385 | Cite as

Side-chain alkylation of 2,6-lutidine to 2,6-divinylpyridine over basic zeolites



Synthesis of 2,6-divinylpyridine (2,6-DVP) and 2-methyl-6-vinylpyridine (2M6VP) was achieved for the first time by side-chain alkylation of 2,6-lutidine using formaldehyde (37 wt/v) as alkylating agent in heterogeneous conditions at atmospheric pressure, and at a reaction temperature of 300 °C over alkali and alkaline metal ion modified zeolites. A mixture of 2,6-divinylpyridine and 2-methyl,6-vinylpyridine were formed by the alkylation of the 2,6-lutidine over Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba metal ion modified zeolites. The catalytic activity of 2,6-lutidine was studied over various potassium metal ion modified zeolite molecular sieves like ZSM-5 (30), X, Y, mordenite and MCM-41. Alkali modified ZSM-5 (30) catalyst was found more active in side-chain alkylation of 2,6-lutidine when compared to other zeolites. Among all these catalysts studied K modified ZSM-5 (30) gave best conversion of 2,6-lutidine and selectivity to 2-methyl,6-vinylpyridine. K-ZSM-5 (30) catalyst was employed to study the reaction parameters like reaction temperature, weight hourly space velocity, molar ratio, and time on stream for 2,6-lutidine. The effect of potassium metal ion content and precursors of potassium ion on catalytic activity in side-chain alkylation of 2,6-lutidine was studied. The bifunctional catalyst is required containing medium or weak acidic centers and basic centers in the side-chain alkylation, which is understood through proposed mechanism. The selectivities of 2,6-DVP were 45.2, 40.0, and 30.7% at 73.4, 66.0 and 60.5% conversion at 300 °C from 2,6-lutidine and formaldehyde over K-ZSM-5 (30), Rb-ZSM-5 (30) and Cs-K-ZSM-5 (30), respectively.


Side-chain alkylation Alkali metal ion modified ZSM-5 2,6-Lutidine 2,6-Divinylpyridine (2,6-DVP) 2-methyl,6-vinylpyridine (2M6VP) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Author G.M. is thankful to CSIR for Senior Research Fellowship and also thankful to Dr. M. Ramakrishna Prasad and Dr. K.V.V. Krishna Mohan for help.


  1. 1.
    S. Feast, J.A. Lercher, in Recent Advances and New Horizons in Zeolite Science and Technology (Studies in Surface Science and Technology, vol. 102), ed. by H. Chon, S.I. Woo, S.E. Park, (Elsevier, Amsterdam, 1996), pp. 363Google Scholar
  2. 2.
    H. Hattori, Chem. Rev. 95, 537 (1995)CrossRefGoogle Scholar
  3. 3.
    D. Barthomeuf, Catal. Rev. 38, 521 (1996)CrossRefGoogle Scholar
  4. 4.
    C.B. Dartt, M.E. Davis, Catal. Today 19, 151 (1994)CrossRefGoogle Scholar
  5. 5.
    M.E. Davis, Acc. Chem. Res. 26, 111 (1993)CrossRefGoogle Scholar
  6. 6.
    P.N. Galich, I.T. Golubchenko, V.S. Gutyrya, V.G. Il’in, I.E. Neimark, Ukr. Khim. Zh. 31, 1117 (1965); Chem. Abstr. 64, 12571 (1966)Google Scholar
  7. 7.
    D.E. Bryant, W.L. Kranich, J. Catal. 8, 8 (1967)CrossRefGoogle Scholar
  8. 8.
    S. Kawakami, S. Takanashi, S. Fujh, Kogyo Kagaku Zasshi 74, 889 (1971)Google Scholar
  9. 9.
    P.N. Galich et al., Dokl. Akad. Nauk SSSR 161, 627 (1965)Google Scholar
  10. 10.
    P.B. Venuto, P.S. Landis, in Advances in Catalysis and Related Subjects, vol. 18, ed. by D.D. Eley, H. Pines, P.B. Weisz, (Academic, New York, 1968), p. 331Google Scholar
  11. 11.
    C.H. Dartt, M.E. Davis, Catal. Today 19, 151 (1994)CrossRefGoogle Scholar
  12. 12.
    T. Yashima, K. Sato, N. Hara, J. Catal. 26, 303 (1972)CrossRefGoogle Scholar
  13. 13.
    D. Barthomeuf, Catal. Rev. Sci. Eng. 38, 521 (1996)CrossRefGoogle Scholar
  14. 14.
    P.E. Hathaway, M.E. Davis, J. Catal. 116, 263 (1989)CrossRefGoogle Scholar
  15. 15.
    H. Itoh, T. Hottori, K. Suzuki, A. Miyamoto, Y. Murakami, J. Catal. 72, 170 (1991)CrossRefGoogle Scholar
  16. 16.
    G. Madhavi, S.J. Kulkarni, K.V.V.S.B.S.R. Murthy, K.V. Raghavan, V. Viswanathan, Appl. Catal. A Gen. 246, 265 (2003) and references cited there inGoogle Scholar
  17. 17.
    H. Itoh, A. Miyamotto, Y. Murakami, J. Catal. 64, 284 (1980)CrossRefGoogle Scholar
  18. 18.
    H. Itoh, T. Hattori, K. Suzuki, Y. Murakami, J. Catal. 79, 21 (1983)CrossRefGoogle Scholar
  19. 19.
    R.P. Alexander, M.A.W. Eaton, T.A. Millican, R.C.D. Titmas, (Celltech Ltd.) PCT Int. Appl. WO 88 05, 433 (cl. CO7D213/30), 28 July 1988; Chem. Abstr. 110 (1989) 212615uGoogle Scholar
  20. 20.
    W.L.J. Jamison, A.J. Moscicki, (Thermoset Plastics. Inc) PCT Int. Appl. WO 9320, 562 (cl. HO1B1/02) US Appl. 863,452,03 1992; Chem. Abstr. 121 (1994) 48145vGoogle Scholar
  21. 21.
    E.G. Martin, US 2,824,844 (1958); Chem. Abstr. 52, 9482i (1958)Google Scholar
  22. 22.
    J. Michalski, K. Studniarski, Roczniki Chem. 29, 1141 (1955); Chem. Abstr. 51, 10530c (1957)Google Scholar
  23. 23.
    R. Bodalski, J. Michalski, K. Studniarski, Roczniki Chem. 38(9), 1337 (1964); Chem. Abstr. 62, 1627c (1965)Google Scholar
  24. 24.
    I.P. Belomestnykh, N.N. Rozhdestvenskaya, G.V. Isagulyants, Khim. Geterotsikl. Soedian. 6, 802 (1994); Chem. Abstr. 122, 31287r (1995)Google Scholar
  25. 25.
    J. Zhu, Y. Chun, Y. Wang, Q. Xu, Catal. Today 51, 103 (1999)CrossRefGoogle Scholar
  26. 26.
    D.E. Pearson, C.A. Buehler, Chem. Rev. 74(1), 45 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Catalysis GroupIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations