Journal of Porous Materials

, Volume 14, Issue 1, pp 19–26 | Cite as

Realumination of zeolite Y under acidic conditions

  • Yasunori Oumi
  • Jou Takahashi
  • Kazuyoshi Takeshima
  • Hery Jon
  • Tsuneji Sano


Dealuminated zeolites Y were treated with aqueous solutions of various acids and ammonium salts to investigate the realumination behavior under acidic conditions. From the results of 27Al MAS NMR, 29Si MAS NMR and FT-IR measurements, it was found that a part of non-framework aluminum species in the dealuminated zeolite Y is effectively reinserted into the zeolite framework in CH3COONH4 and C6H5COONH4 aqueous solutions. Pyridine adsorption experiments also revealed that most of incorporated aluminum species generate tetrahedrally coordinated framework aluminum species, namely Brönsted acid sites. Although the realumination also proceeded in H2SO4 and CH3COOH aqueous solutions, large amounts of incorporated aluminum species were not necessarily responsible for generation of Brönsted acid sites. Framework connected aluminum species, presumably as 3-fold-coordinated Lewis acidic framework aluminum species, were mainly generated. In the TEM image of the realuminated zeolite Y, needle-like crystals with ca. 25–80 nm in length were observed, which are probably due to AlOOH generated from non-framework aluminum species.


Zeolite Y Dealumination Realumination Ammonium salt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Mr. M. Ushio and Mr. R. Kuroda (Catalysts & Chemicals Ind. Co. Ltd. Japan) for providing zeolite NH4Y and helpful discussion.


  1. 1.
    J. Datka, S. Marschmeyer, T. Neubauer, J. Meusinger, H.␣Papp, F.W. Schüyze, I. Szpyt, J. Phys. Chem. 100, 14451 (1996)CrossRefGoogle Scholar
  2. 2.
    M.R. Apelian, A.S. Fung, G.J. Kennedy, T.F. Degnan, J.␣Phys. Chem. 100, 16577 (1996)CrossRefGoogle Scholar
  3. 3.
    D.W. Breck, G.W. Skeels, in Proc. 5th Int. Zeolite Conf., ed. by L.V.C. Rees (Heyden, London, 1980), p. 335Google Scholar
  4. 4.
    X. Lin, J. Klinowski, J.M. Thomas, J. Chem. Soc., Chem. Commun. 582 (1986)Google Scholar
  5. 5.
    L. Aouali, J. Jeanjean, A. Dereifn, P. Tougne, D. Delafosse, Zeolite 8, 517 (1988)CrossRefGoogle Scholar
  6. 6.
    H. Hamdan, B. Sulikowski, J.M. Thomas, J. Phys. Chem. 93, 517 (1989)CrossRefGoogle Scholar
  7. 7.
    Z. Zhang, X. Liu, Y. Xu, R. Xu, Zeolites 11, 232 (1991)CrossRefGoogle Scholar
  8. 8.
    H. Ishida, Y. Fukuoka, Nippon Kagaku Kaishi 690 (1994)Google Scholar
  9. 9.
    J. Datka, B. Sulikowsk, B. Gil, J. Phys. Chem. 100, 11242 (1996)CrossRefGoogle Scholar
  10. 10.
    C. Yang, Q. Xu, Zeolites 18, 162 (1997)CrossRefGoogle Scholar
  11. 11.
    X. Zaiku, C. Qingling, Z. Chengfang, B. Jiaqing, C. Yuhua, J.␣Phys. Chem. B 104, 2853 (2000)CrossRefGoogle Scholar
  12. 12.
    T. Sano, R. Tadenuma, Z.B. Wang, K. Soga, J. Chem. Soc., Chem. Commun. 1945 (1997)Google Scholar
  13. 13.
    T. Sano, Y. Uno, Z.B. Wang, C.H. Ahn, K. Soga, Microporous Mesoporous Mater. 31, 89 (1999)CrossRefGoogle Scholar
  14. 14.
    Y. Oumi, R. Mizuno, K. Azuma, S. Nawata, T. Fukushima, T. Uozumi, T. Sano, Microporous Mesoporous Mater. 49, 103 (2001)CrossRefGoogle Scholar
  15. 15.
    Y. Oumi, S. Nemoto, S. Nawata, T. Fukushima, T. Teranishi, T. Sano, Mater. Chem. Phys. 78, 551 (2002)CrossRefGoogle Scholar
  16. 16.
    E. Loeffiner, U. Lohse, C. Peuker, G. Oehlmann, L.M. Kustov, V.L. Zholobenko, V.B. Kazansky, Zeolites 10, 266 (1990)CrossRefGoogle Scholar
  17. 17.
    I. Kiricsi, C. Flego, G. Pazzuconi, W.O. Parker, R. Millini Jr., C. Perego, G. Bellussi, J. Phys. Chem. 98, 4627 (1994)CrossRefGoogle Scholar
  18. 18.
    J. Datka, B. Sulikowski, B. Gil, J. Phys. Chem. 100, 11242 (1996)CrossRefGoogle Scholar
  19. 19.
    E. Bourgeat-Lami, P. Massiani, F.D. Renzo, P. Espiau, F.␣Fajula, Appl. Catal. 72, 139 (1991)CrossRefGoogle Scholar
  20. 20.
    B.H. Wouters, T.-H. Chen, P.J. Grobet, J. Am. Chem. Soc. 120, 11419 (1998)CrossRefGoogle Scholar
  21. 21.
    A. Omegna, J.A. van Bokhoven, R. Prins, J. Phys. Chem. B 107, 8854 (2003)CrossRefGoogle Scholar
  22. 22.
    J. Jiao, S. Altwasser, W. Wang, J. Weitkamp, M. Hunger, J.␣Phys. Chem. B 108, 14305 (2004)CrossRefGoogle Scholar
  23. 23.
    B. Xu, F. Rotunno, S. Bordiga, R. Prins, J.A. van Bokhoven, J. Catal. 241, 66 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Barzetti, E. Selli, D. Moscotti, L. Forni, J. Chem. Soc., Faraday Trans. 92, 1401 (1996)CrossRefGoogle Scholar
  25. 25.
    K. Sato, Y. Nishimura, N. Matsubayashi, M. Imamura, H.␣Shimada, Microporous Mesoporous Mater. 59, 133 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yasunori Oumi
    • 1
  • Jou Takahashi
    • 2
  • Kazuyoshi Takeshima
    • 2
  • Hery Jon
    • 1
  • Tsuneji Sano
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomi, IshikawaJapan

Personalised recommendations