Advertisement

Journal of Porous Materials

, Volume 13, Issue 3–4, pp 407–412 | Cite as

Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors

  • Mengqiang Wu
  • Jiahui Gao
  • Shuren Zhang
  • Ai Chen
Article

Abstract

Highly porous NiO was prepared via a combination of sol-gel process with supercritical drying method in this paper. The as-synthesized NiO samples exhibit 80–90% porosity and high surface area, ie, 180.5–325.6 m2g−1. Cyclic voltammetric and chronopotentiometric measurements indicated the aerogel-like NiO in 1 mol.L−1 KOH solution to behave capacitive well due to its uniform mesoporous microstructure. It was also observed that post-heating temperature plays a critical role in the mesoporous nature of the aerogel-like materials. An optimal heating temperature of 300C was found to favor the formation of mesopores, which account for the large specific capacitance of as high as 125 F.g−1. The average specific capacitance of the aerogel-like NiO was observed to be about 75–125 F.g−1 between a potential window of 0–0.35 V vs. SCE.

Keywords

Supercapacitor Nickel oxide Aerogel Supercritical drying 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)CrossRefGoogle Scholar
  2. 2.
    S. Sarangapani, B.V. Tilak, and C-P. Chen, J. Electrochem. Soc. 143, 3791 (1996)CrossRefGoogle Scholar
  3. 3.
    B.E. Conway, Electrochemical Supercapacitos: Scientific Fundamentals and Technological Applications. (Kluwer Academic/Plenum Publishers, New York, 1999)Google Scholar
  4. 4.
    A. Nishino, J. Power Sources 60, 137 (1996)CrossRefGoogle Scholar
  5. 5.
    M. Nakamura, M. Nakanishi, and K. Yamamoto, J. Power Sources 60, 225 (1996)CrossRefGoogle Scholar
  6. 6.
    D. Qu, J. Power Sources 109, 403 (2002)CrossRefGoogle Scholar
  7. 7.
    J.P. Zheng, P.J. Cygan, and T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995)CrossRefGoogle Scholar
  8. 8.
    T. Liu, W.G. Pell, and B.E. Conway, Electrochim. Acta 42, 3541 (1997)CrossRefGoogle Scholar
  9. 9.
    A.A.F. Grupioni, E. Arashiro, and T.A.F. Lassali, Electrochim. Acta 48, 407 (2002)CrossRefGoogle Scholar
  10. 10.
    K.C. Liu and M.A. Anderson, J. Electrochem. Soc. 143, 124 (1996)CrossRefGoogle Scholar
  11. 11.
    V. Srinivasan, and J.W. Weidner, J. Electrochem. Soc. 144, L210 (1997)CrossRefGoogle Scholar
  12. 12.
    V. Srinivasan, and J.W. Weidner, J. Electrochem. Soc. 147, 880 (2000)CrossRefGoogle Scholar
  13. 13.
    A.A.F. Grupioni and T.A.F. Lassali, J. Electrochem. Soc. 148, A1015 (2001)CrossRefGoogle Scholar
  14. 14.
    K.W. Nam, W.S. Yoon, and K.B. Kim, Electrochim. Acta 47, 3201 (2002)CrossRefGoogle Scholar
  15. 15.
    E.E. Kalu, T.T. Nwoga, V. Srinivasan, and J.W. Weidner, J. Power Sources 92, 163 (2001)CrossRefGoogle Scholar
  16. 16.
    V. Srinivasan and J.W. Weidner, J. Power Sources 108, 15 (2002)CrossRefGoogle Scholar
  17. 17.
    H.-K. Kim, T.-Y. Seong, J.-H. Lim, W. Li CHo, and Y. Soo Yoon, J. Power Sources 102, 167 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Lin, J.A. Ritter, and B.N. Popov, J. Electrochem. Soc. 145, 4097 (1998)CrossRefGoogle Scholar
  19. 19.
    S.C. Pang and M.A. Anderson, J. Mater. Res. 15, 2096 (2000)CrossRefGoogle Scholar
  20. 20.
    R.N. Reddy and R.G. Reddy, J. Power Sources 124, 330 (2003)CrossRefGoogle Scholar
  21. 21.
    M. Wu, G.A. Snook, G.Z. Chen, and D.J. Fray, Electrochem. Commun. 6, 499 (2004)CrossRefGoogle Scholar
  22. 22.
    K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, and S.H. Chang, J. Power Sources 103, 305 (2002)CrossRefGoogle Scholar
  23. 23.
    K.S. Ryu, Y.-G. Lee, Y.-S. Hong, Y.J. Park, X. Wu, and K.M. Kim, Electrochim. Acta 50, 838 (2004)Google Scholar
  24. 24.
    M. Wu, G.A. Snook, V. Gupta, M. Shaffer, D.J. Fray, and G.Z. Chen, J. Maters. Chem. 15, 2297 (2005)CrossRefGoogle Scholar
  25. 25.
    S.T. Mayer, R.W. Pekela, and J.L. Kaschmitter, J. Electrochem. Soc. 140, 446 (1993)CrossRefGoogle Scholar
  26. 26.
    H. Si, Electrochim. Acta 41, 1633 (1996)CrossRefGoogle Scholar
  27. 27.
    H. Probstle, C. Schmitt, and J. Fricke, J. Non-Cryst. Sol. 225, 81 (1998)CrossRefGoogle Scholar
  28. 28.
    U. Fischer, R. Saliger, V. Bock, R. Petriceyic, and J. Fricke, J. Porous Mater. 4, 281 (1997)CrossRefGoogle Scholar
  29. 29.
    V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Solid State Ionics 175, 511 (2004)CrossRefGoogle Scholar
  30. 30.
    W. Dong, J. Sakamoto, and B. Dunn, J. Sol-Gel Sci. Tech. 26, 641 (2003)CrossRefGoogle Scholar
  31. 31.
    P.E. Tang, J.S. Sakamoto, E. Baudrin, and B. Dunn, J. Non-Cryst. Sol. 350, 67 (2004)CrossRefGoogle Scholar
  32. 32.
    W. Xing, F. Li, Z.-F. Yan, and G.Q. Lu, J. Power Sources 134, 324 (2004)CrossRefGoogle Scholar
  33. 33.
    G.A.M. Reynolds, M.S. Dresselhaus, A.W.P. Fung, Z.H. Wang, and R.W. Pekala, J. Non-Crys. Sol. 18, 827 (1995)Google Scholar
  34. 34.
    M.S. Kim, T.S. Hwang, and K.B. Kim, J. Electrochem. Soc. 144, 1537 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Mengqiang Wu
    • 1
  • Jiahui Gao
    • 1
  • Shuren Zhang
    • 1
  • Ai Chen
    • 1
  1. 1.School of Microelectronics and Solid State ElectronicsUniversity of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations