Advertisement

Journal of Porous Materials

, Volume 13, Issue 3–4, pp 287–290 | Cite as

Optical study on opaline thin films grown by vertical deposition

  • R. Fujikawa
  • A. V. Baryshev
  • K. Nishimura
  • H. Uchida
  • M. Inoue
Article

Abstract

We have studied optical properties of opaline thin films grown by the vertical deposition method. The opaline films under study were three-dimensional close-packed arrangements of a-SiO2 spheres. The fcc domains, which are of 10–50 μm in size and separated by cracks, were seen in FE-SEM images. Analysis of angle-resolved transmissivity of opaline films shows that they act as three-dimensional photonic crystals. Photonic stop-bands were observed and attributed to the {111} family of crystallographic planes. Crystallographic structure of the films was characterized as twinned fcc, in which twins are spatially separated by cracks.

Keywords

Artificial opal Photonic crystal Vertical deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
  2. 2.
    J. Sharee, Mjal Moll, and Yurii, A. Vlasov, Optics Express, vol. 11, 22, 2927 (2003).Google Scholar
  3. 3.
    S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).CrossRefGoogle Scholar
  4. 4.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58(16), R10096 (1998).CrossRefGoogle Scholar
  5. 5.
    M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 85, 5786 (1999).CrossRefGoogle Scholar
  6. 6.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74(10), 1370 (1999).CrossRefGoogle Scholar
  7. 7.
    N.D. Deniskina, D.V. Kalinin, and L.K. Kazantseva, Precious Opals, Their Synthesis and Natural Genesis (Nauka, Novosibirsk, 1988), p. 353 (1988).Google Scholar
  8. 8.
    D. Orlin, Velev, and Abraham, M. Lenhoff, Current Opinion in Colloid and Interface Science 5, 56 (2000).CrossRefGoogle Scholar
  9. 9.
    Z. Zhou, X. Bao, and X.S. Zhao, Chem. Comm. 1376 (2004).Google Scholar
  10. 10.
    S.H. Park and Y. Xia, Adv. Mater. 10(13) (1998).Google Scholar
  11. 11.
    A.S. Dimitrov and K. Nagayama, Langmuir, 12(5), 1303 (1996).CrossRefGoogle Scholar
  12. 12.
    P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin, Chem. Mater. 11, 2132 (1999).CrossRefGoogle Scholar
  13. 13.
    Z. Zhou and X.S. Zhao, Langmuir 20, 1524 (2004).CrossRefGoogle Scholar
  14. 14.
    D.J. Norris, E.G. Arlinghaus, L. Meng, R. Heiny, and L.E. Scriven, Adv. Mater. 16(16), 1393 (2004).CrossRefGoogle Scholar
  15. 15.
    Q. Yan, Z. Zhou, and X.S. Zhao, Chem. Mater. 17, 3069 (2005).CrossRefGoogle Scholar
  16. 16.
    A.V. Baryshev, A.A. Kaplyanskii, V.A. Kosobukin, M.F. Limonov, and A.P. Skvortsov, Phys. of the Solid State 46, No. 7, 1331 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • R. Fujikawa
    • 1
  • A. V. Baryshev
    • 1
    • 3
  • K. Nishimura
    • 1
  • H. Uchida
    • 1
  • M. Inoue
    • 1
    • 2
  1. 1.Toyohashi University of TechnologyAichiJapan
  2. 2.Japan Science and Tech. CorporationSaitamaJapan
  3. 3.A. F. Ioffe Physico–Technical InstituteSt.-PetersburgRussia

Personalised recommendations