Journal of Porous Materials

, Volume 13, Issue 2, pp 157–161 | Cite as

Preparation and properties of trans-2-butene-1,4-bis (triphenylphosphonium)-saponite

  • Yusuke Tanaka
  • Tomohiko Okada
  • Makoto Ogawa


Intercalation of trans-2-butene-1,4-bis(triphenyl phosphonium) into synthetic saponite (Sumecton SA; cation exchange capacity of 71 meq (100 g clay)−1) was conducted by the cation exchange reaction in aqueous solution. The sample was obtained as powder and thin supported film. Quantitative cation exchange was shown by the chemical composition of the product as well as the amount of the trans-2-butene-1,4-bis(triphenylphosphonium) remaining in the solution. The intercalation compound adsorbed styrene from aqueous solution and exhibited thermal stability (decomposes at higher than 400°C) as shown by the TG-DTA curves recorded in air.


Adsorption Intercalation compound Synthetic saponite Trans-2-butene-1, 4-bis (triphenylphosphonium) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.K.G. Theng, The Chemistry of Clay-Organic Reactions (Adam Hilger, London, 1974).Google Scholar
  2. 2.
    M. Ogawa and K. Kuroda, Chem. Rev. 95, 399 (1995).CrossRefGoogle Scholar
  3. 3.
    M. Ogawa and K. Kuroda, Bull. Chem. Soc. Jpn. 70, 2593 (1997).Google Scholar
  4. 4.
    G. Lagaly, Clay Miner. 16, 1 (1981).Google Scholar
  5. 5.
    R.M. Barrer, Clays Clay Miner. 37, 385 (1989).Google Scholar
  6. 6.
    M. Ogawa, Ann. Rep. Sect. C 94, 209 (1998).Google Scholar
  7. 7.
    Handbook of Layered Materials, edited by S.M. Auerbach, K.A. Carrado and P.K. Dutta (Marcel Dekker, New York, 2004).Google Scholar
  8. 8.
    R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, London, 1978).Google Scholar
  9. 9.
    T.R. Jones, Clay Miner. 18, 399 (1983).Google Scholar
  10. 10.
    R.K. Kukkadapu and S.A. Boyd, Clays Clay Miner. 43, 318 (1995).Google Scholar
  11. 11.
    M.A.M. Lawrence, R.K. Kukkadapu, and S.A. Boyd, Appl. Clay Sci. 13, 13 (1998).CrossRefGoogle Scholar
  12. 12.
    W. Xie, R.C. Xie, W.P. Pan, D. Hunter, B. Koene, L.S. Tan, and R. Vaia, Chem. Mater. 14, 4837 (2002).CrossRefGoogle Scholar
  13. 13.
    J. Zhu, A.B. Morgan, F.J. Lamelas, and C.A. Wilkie, Chem. Mater. 13, 3774 (2001).Google Scholar
  14. 14.
    M.E. Hagerman, S.J. Salamone, R.W. Herbst, and A.L. Payeur, Chem. Mater. 15, 443 (2003).CrossRefGoogle Scholar
  15. 15.
    S. Yariv, Appl. Clay Sci. 24, 225 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Brunauer, L.S. Deming, W.E. Deming, and E. Teller, J. Am. Chem. Soc. 62, 1723 (1940).Google Scholar
  17. 17.
    Y. Yang and T. Bein, Chem. Mater. 5, 905 (1993).Google Scholar
  18. 18.
    M. Ogawa, M. Takahashi, C. Kato, and K. Kuroda, J. Mater. Chem. 4, 519 (1994).CrossRefGoogle Scholar
  19. 19.
    C.H. Giles, T.H. MacEwan, S.N. Nakhwa, and D. Smith, J. Chem. Soc. 111, 3973 (1960).Google Scholar
  20. 20.
    H. van Olphen, An Introduction to Clay Colloid Chemistry 2nd ed., (Wiley-Interscience, New York, 1977).Google Scholar
  21. 21.
    G. Westermark, H. Kariis, I. Persson, and B. Liedberg, Colloid Surf. A 150, 31 (1999).CrossRefGoogle Scholar
  22. 22.
    Y. El-Nahhal, S. Nir, C. Serban, O. Rabinovitz, and B. Rubin, J. Agric. Food Chem. 49, 5364 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Department of Earth SciencesWaseda UniversityTokyoJapan

Personalised recommendations