Journal of Porous Materials

, Volume 13, Issue 1, pp 13–19 | Cite as

Preparation and characterization of multicomponent porous materials prepared by the sol-gel process

  • E. Minor-Pérez
  • R. Mendoza-Serna
  • J. Méndez-Vivar
  • R. C. Pless
  • D. Quintana-Zavala
  • R. Torres-Robles


An experimental strategy was developed to obtain transparent Si-Al-Ti-Ni-Mo and Si-Zr-Ti-Ni-Mo sols via the sol-gel process. The sol was prepared from Si(OEt)4 (TEOS), Al(OBus)3 (OBus: C2H5CH(CH3)O), Ti(OEt)4 (OEt: OCH2CH3), Zr(OPrn)4 (OPrn: OCH2CH2CH3). In both cases nickel nitrate hexahydrate (Ni(NO3)2 · 6H2O) and ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24 · 4H2O) were the Ni and Mo sources, respectively. The sols were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Assignments of the simultaneous formation of the Si-O-Al, Si-O-Ti, Si-O-Ni, and Si-O-Zr bonds were done. The sols were polymerized at room temperature (293 K) to obtain gels, and these were dried at 423 K and calcined at 573, 853 and 893 K in air. The characterization techniques used were small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR). The density of the solids was measured following ASTM method D-4892 and the porosity and surface area were determined by N2 adsorption/desorption isotherms. The corresponding average pore diameters were evaluated using the BJH, HK, and DA methods.


Sol-gel SiO2-Al2O3-TiO2-NiO-MoO3 SiO2ZrO2-TiO2-NiO-MoO3 FTIR XRD porous materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Snow, J. Amer. Ceram. Soc. 56(2), 91 (1973).Google Scholar
  2. 2.
    H. Perthuis, G. Velasco, and Ph. Colomban, Jap. J. Appl. Phys. 23(5), 534 (1984).Google Scholar
  3. 3.
    M.T. Harris, A. Singhal, J.L. Look, J.R. Smith-Kristensen, J.S. Lin, and L.M. Toth, J. Sol-Gel Sci. Tech. 8, 41 (1997).CrossRefGoogle Scholar
  4. 4.
    G.M. Dhar, B.N. Srinivas, M.S. Rana, M. Kumar, and S.K. Maity, Catal. Today 86, 45 (2003).CrossRefGoogle Scholar
  5. 5.
    L.C. Klein, ed., Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes (Noyes, Park Ridge. NJ, 1988).Google Scholar
  6. 6.
    A.J. Burggraaf and K. Keiser, in Inorganic Membranes, Synthesis, Characteristics and Applications, edited by R.R. Bhave (Van Nostrand, Reinhold. NY, 1991) p. 39.Google Scholar
  7. 7.
    R.S.A. de Lange. PhD thesis. Universiteit Twente, The Netherlands (1993).Google Scholar
  8. 8.
    C.J. Brinker, T.L. Ward, R. Sehgal, N.K. Raman, S.L. Hietala, D.M. Smith, D.-W. Hua, and T.J. Headley, J. Membrane Sci. 77, 165 (1993).CrossRefGoogle Scholar
  9. 9.
    J. Méndez-Vivar, R. Mendoza-Serna, P. Bosch, V.H. Lara, and C.J. Brinker, in: Proc. 4th Int. Conf. on Inorganic Membranes, Gatlinburg, TN, July 14–18, 1996.Google Scholar
  10. 10.
    Encyclopedia of catalysis, John Wiley & Sons, Inc. New York, 2002.Google Scholar
  11. 11.
    M. J. Ledoux, A. Peter, E. A. Blekkan, and F. Luck, Applied Catal. 133, 321 (1995).Google Scholar
  12. 12.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990), 839–841.Google Scholar
  13. 13.
    J.C. Debsikdar, J. Mater. Sci. 20, 4454 (1985).CrossRefGoogle Scholar
  14. 14.
    D. Hoebbel, T. Reinert, H. Schmidt, and E. Arpac, J. Sol-Gel Sci. Tech. 10, 115 (1997).CrossRefGoogle Scholar
  15. 15.
    W.C. LaCourse and S. Kim, Ceram. Eng. Sci. Proc. 8, 1128 (1987).Google Scholar
  16. 16.
    A. Léaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 240 (1989).Google Scholar
  17. 17.
    J.B. Miller, S.E. Rankin, and E.I. Ko, J. Catal. 148, 673 (1994).CrossRefGoogle Scholar
  18. 18.
    Z. Zhan and H.C. Zeng, J. Non-Cryst. Solids 243, 26 (1999).CrossRefGoogle Scholar
  19. 19.
    L. Valdez-Castro, J. Méndez-Vivar, and R. Mendoza-Serna, J. Porous Mater. 8, 303 (2001).CrossRefGoogle Scholar
  20. 20.
    O. Glatter, Acta Physica Austr. 47, 83 (1977).Google Scholar
  21. 21.
    O. Glatter, J. Appl. Cryst. 10, 415 (1977).CrossRefGoogle Scholar
  22. 22.
    H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures, 2nd ed.; (John Wiley & Sons, NY, 1974), p. 837.Google Scholar
  23. 23.
    J. Méndez-Vivar and A. Mendoza-Bandala, J. Non-Cryst. Solids 261, 127 (2000).Google Scholar
  24. 24.
    J. Méndez-Vivar and C.J. Brinker, J. Sol-Gel Sci. Tech. 2, 393 (1994).Google Scholar
  25. 25.
    J. Méndez-Vivar, R. Mendoza-Serna, and L. Valdez-Castro, J. Non-Cryst. Solids 288, 200 (2001).CrossRefGoogle Scholar
  26. 26.
    Y. Abe, N. Sugimoto, Y. Nagao, and T. Misono, J. Non-Cryst. Solids 108, 150 (1989).CrossRefGoogle Scholar
  27. 27.
    T.-C. Sheng, S. Lang, B.A. Morrow, and I.D. Gay, J. Catal. 148, 341 (1994).CrossRefGoogle Scholar
  28. 28.
    X. Liu, C.-M. Chun, I.A. Aksay, and W-H. Shih, Ind. Eng. Chem. Res. 39, 684 (2000).CrossRefGoogle Scholar
  29. 29.
    Z. Congshen, H. Lisong, G. Fuxi, and J. Zhonghong, J. Non-Cryst. Solids 63, 105 (1984).Google Scholar
  30. 30.
    J. Méndez-Vivar, P. Bosch, V.H. Lara, and R. Mendoza-Serna, J. Porous Mater. 9, 231 (2002).Google Scholar
  31. 31.
    S. Puroit, A.P. Koley, L.S. Prasad, P.T. Manoharan, and S. Grosh, Inorg. Chem. 28, 3735 (1989).Google Scholar
  32. 32.
    C. Rocchiccioli-Deltcheff, R. Thouvenot, and M. Fouassier, Inorg. Chem. 21, 30 (1982).CrossRefGoogle Scholar
  33. 33.
    C.J. Pouchert (Ed.), The Aldrich Library of Infrared Spectra, third ed., (Aldrich Chemical, Milwaukee, WI, 1981), p. 246.Google Scholar
  34. 34.
    Z. Liu, G.M. Crumbaugh, and R.J. Davis, J. Catal. 159, 83 (1996).CrossRefGoogle Scholar
  35. 35.
    L.F. Nazar and L.C. Klein, J. Am. Ceram. Soc. 71(2), C-85 (1988).Google Scholar
  36. 36.
    S. Acosta, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Sol-Gel Sci. Tech. 2, 25 (1994).CrossRefGoogle Scholar
  37. 37.
    S. Sen, and R.E. Youngman, J. Phys. Chem. B 108, 7557 (2004).CrossRefGoogle Scholar
  38. 38.
    S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, second ed., (Academic Press, 1982), p. 195Google Scholar
  39. 39.
    S. Lowell and J.E. Shields, Powder Surface Area and Porosity, third ed., (Chapman & Hall, 1991), p. 11–13.Google Scholar
  40. 40.
    S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, second ed., (Academic Press, 1982), p. 287.Google Scholar
  41. 41.
    E.P. Barret, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).Google Scholar
  42. 42.
    G. Horváth and K. Kawazoe, J. Chem. Eng. Japan 16(6), 470 (1983).Google Scholar
  43. 43.
    R.S.A. de Lange, J.H.A. Hekkink, K. Keiser, and A.J. Burggraaf, J. Non-Cryst. Solids 195, 203 (1996).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • E. Minor-Pérez
    • 1
    • 6
  • R. Mendoza-Serna
    • 2
  • J. Méndez-Vivar
    • 3
  • R. C. Pless
    • 4
  • D. Quintana-Zavala
    • 1
  • R. Torres-Robles
    • 5
  1. 1.CICATA-IPNUnidad LegariaMéxicoMexico
  2. 2.FES-ZaragozaUNAMMéxicoMexico
  3. 3.Depto. de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMéxicoMexico
  4. 4.CICATA-IPNUnidad QuerétaroMexico
  5. 5.Programa de Ingeniería MolecularInstituto Mexicano del PetróleoMéxicoMexico
  6. 6.Facultad de Estudios Superiores ZaragozaU.N.A.M.MéxicoMéxico

Personalised recommendations