Oxic and post-oxic chemical changes related to eogenesis and mesogenesis in a Miocene paleolake

Abstract

In the Forez Basin of the French Massif Central, clay-rich alluvial deposits include a series of red- and green-colored sediments and carbonate cement that record evaporation and oxidizing/reducing conditions related to intra-continental climate during the Early to Middle Miocene. The mineralogy, chemistry and relative chronology of authigenic calcite-ankerite, ferroan dolomite, pyrite, and analcite-clinoptilolite in clay-rich sediment enabled reconstruction of a series of processes related to deposition, eogenesis, and mesogenesis. The low-Mg calcite, ankerite, and ferroan-dolomite cement, systematically associated with zeolites (analcite and clinoptilolite), represent eogenetic precipitation associated with oxic to post-oxic water with Ca–Fe–Mg carbonic, then Na–Al–Si(OH)4-rich water. Occurrence of framboidal and cubic pyrites with low-Mg calcite and analcite is related to post-oxic conditions associated with deposition, eogenesis and times of early mesogenesis. Changes in the morphology, size, and chemistry of framboidal and cubic pyrite grains were related to reducing-oxidizing cycles and to the growth of grains. Sulfur isotope measures on framboidal and cubic pyrite suggest that both morphologies are related to bacterial reduction of SO42− to H2S and HS−1. With the exception of some sample depths (0–40 m below surface), similar chemical contents (trace elements [TE], rare earth elements [REE] and platinoids) suggest a similar, constant reservoir of metal and metalloids associated with the clayey sediment and volcanic fragments. Moreover, the TE and REE chemistry of cubic pyrite, in contrast to carbonates, indicates growth of pyrite during eogenesis to mesogenesis stages. The mineralogical and chemical changes are interpreted as reflecting dissolution of iron oxyhydroxides, rather than ankerite and ferroan-dolomite. Chemical elements from dissolution of iron oxyhydroxides would have mixed with hydrogen monosulfide and contributed to the growth of cubic pyrite. The crystal size distributions of pyrite grains suggest a closed system with surface-controlled growth. Assuming those conditions, the growth time of framboidal to cubic pyrite, based on diffusion of HS−1 in the clay-rich sediments, was estimated to have been from several days to a few years, to as much as 500 years (mm-scale pyrite).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arenas C, Alonso Zarza AM, Pardo G (1999) Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain). Sed Geol 125:23–45

    Article  Google Scholar 

  2. Bhat HL (2014) Introduction to crystal growth: principles and practice. Taylor and Francis, Boca Raton, London, New York, p 346

    Google Scholar 

  3. Böttcher ME, Thamdrup BO (2001) Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochim et Cosmochim Acta 65:1573–1581

    Article  Google Scholar 

  4. Böttcher ME, Smock AM, Cypionka H (1998) Sulfur isotope fractionation during experimental precipitation of iron II/ and manganese II/ sulfide at room temperature. Chem Geol 146:127–134

    Article  Google Scholar 

  5. Burley SD, Kantorowicz JD, Waugh B (1985) Clastic diagenesis, vol 18. Geological Society, London, Special Publications, pp 189–226

    Article  Google Scholar 

  6. Canfield DE, (2001) Biogeochemistry of sulfur isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43: 607–636

  7. Canfield DE (2004) The evolution of the Earth surface sulfur reservoir. Am J Sci 304:839–861

    Article  Google Scholar 

  8. Canfield DE, Farquhar J, Zerkle AL (2010) High isotope fractionation during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38:415–418

    Article  Google Scholar 

  9. Canfield DE, Thamdrup B, Fleischer S (1998) Isotopic fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol Oceanogr 43:253–264

    Article  Google Scholar 

  10. Cypionka H, Smock AM, Böttcher ME (1998) A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 166:181–186

    Article  Google Scholar 

  11. Deditius AP, Utsunomiya S, Kesler SE, Reich M, Ewing RC (2011) Trace elements nanoparticles in pyrite. Ore Geol Rev 42:32–46

    Article  Google Scholar 

  12. Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J, Ewing RC (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim et Cosmochim Acta 140:644–670

    Article  Google Scholar 

  13. Detmers J, Bruchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894

    Article  Google Scholar 

  14. Franz SO, Schwark L, Bruchmann C, Scharf B, Van Alstine JD, Cagatay N, Ulgen UB (2006) Results from a multi-disciplinary sedimentary pilot study of tectonic Lake Iznik (NW Turkey) - geochemistry and paleolimnology of the recent past. J Paleolimnol 35:715–736

    Article  Google Scholar 

  15. Gayer RA, Rose M, Dehmer J, Shao LY (1999) Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal—case study from the South Wales Variscan foreland basin. Int J Coal Geo 40:151–174

    Article  Google Scholar 

  16. Gerbe MC, Gonord H, Bilal E (2000) Découverte d’un paléosol néogène dans les Monts du Forez au sein du complexe volcanique de Montclaret-Fontvial : conséquences morpho-tectoniques régionales. Geol de la France 2:59–69

    Google Scholar 

  17. Habicht KS, Canfield DE, Rethmeier J (1998) Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochim et Cosmochim Acta 62:2585–2595

    Article  Google Scholar 

  18. Haimour N, Sandal OC (1984) Molecular diffusivity of hydrogen sulfide in water. J Chem Eng Data 29:20–22. https://doi.org/10.1021/je00035a009

    Article  Google Scholar 

  19. Härtig C, Planer-Friedrich B (2012) Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring. Environ Sci Technol 46:4348–4356

    Article  Google Scholar 

  20. Hild E, Brumsack HJ (1998) Major and minor element geochemistry of lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40). Cretac Res 19:615–633

    Article  Google Scholar 

  21. Horvatincic N, Sironi A, Baresi J, Bronic IK, Borkovic D (2018) Mineralogical, organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes, the Plitvice Lakes, Croatia. Quat Int 494:300–313

    Article  Google Scholar 

  22. Jackson KA (2010) Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, 2nd Edition Wiley-VCH, pp. 453, ISBN: 978–3–527–32736–2

  23. Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    Article  Google Scholar 

  24. Jin Z, An Z, Yu J, Li F, Zhang F (2015) Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial. Quat Sci 122:63–73

    Article  Google Scholar 

  25. Kocar BD, Herbel MJ, Tufano KJ, Fendorf S (2006) Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ Sci Technol 40:6715–6721

    Article  Google Scholar 

  26. Kribek B, Knesl I, Rojık P, Sykorova I, Martınek K (2017) Geochemical history of a Lower Miocene lake, the Cypris Formation, Sokolov Basin, Czech Republic. J Paleolimnol 58:169–190

    Article  Google Scholar 

  27. Lenoir X, Dautria JM, Briqueu L, Cantagrel JM, Michard A (2000) Nouvelles données géochronologiques, géochimiques et isotopiques sur le volcanisme du Forez : relation avec l'évolution cénozoïque du manteau du Massif central. C R Acad Sci - Series IIA 330:201–207

    Google Scholar 

  28. Lloyd KG, Edgcomb VP, Molyneaux SJ, Böer S, Wirsen CO, Atkins MS, Teske A (2005) Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic Archaea. Appl Environ Microbiol 71:6383–6387

    Article  Google Scholar 

  29. Manning BA, Goldberg S (1997) Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ Sci Technol 31:2005–2011

    Article  Google Scholar 

  30. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  31. Mees F, Stoops G, Van Ranst E, Paepe R, Van Overloop E (2005) The nature of zeolite occurrences in deposits of the Olduvai Basin, Northern Tanzania. Clays Clay Miner 53:659–673

    Article  Google Scholar 

  32. Merinero R, Lunar R, González FJ, Somoza L, Martínez-Frías J (2014) A Mathematical Algorithm to Simulate the Growth and Transformation of Framboidal Pyrite: Characterization of the Biogenic Influence in Their Size Distributions. In: Pardo-Igúzquiza et al. (eds) Mathematics of Planet Earth, Springer-Verlag Berlin Heidelberg, ISBN: 978–3–642–32407–9, pp. 793–796

  33. Morse JW, Millero FJ, Cornell JC, Rickard D (1987) The Chemistry of the Hydrogen Sulfide and Iron Sulfide Systems in Natural Waters. Earth-Sci Rev 24:1–42

    Article  Google Scholar 

  34. Négrel Ph, Petelet-Giraud E, Serra H Millot R, Kloppmann W (2004) Caractéristiques hydrogéochimiques et isotopiques d’eaux thermo-minérales du Massif central. Inventaire du potentiel géothermique de la Limagne (projet COPGEN) BRGM/RP-53597-FR, pp. 165

  35. Neumann T, Rausch N, Leipe T, Dellwig O, Berner Z, Böttcher ME (2005) Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea. Geochim et Cosmochim Acta 69:3619–3630

    Article  Google Scholar 

  36. Nriagu JO, Ress CE, Mekhtiyeva VL, Lein AY, Fritz P, Drimmie RJ, Pankina RG, Robinson RW, Krouse HR (1991) Hydrosphere. In: Krouse HR, Grinenko VA (eds) Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment. SCOPE 43, Wiley, New York, pp. 177–265

  37. Ohmoto H, Rye RO (1979) Isotope of sulfur and carbon. In: Barnes HL (ed) Geochemistry of Hydrothermal deposits. Wiley, New York, pp 509–567

    Google Scholar 

  38. Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York, NY, USA, pp 517–611

    Google Scholar 

  39. Palenik CS, Ustunomiya S, Reich M, Kesler S, Wang L, Ewing RC (2004) “Invisible” gold revealed: direct imagining of gold nanoparticles in a Carlin-type deposit. Am Mineral 89:1359–1366

    Article  Google Scholar 

  40. Passaglia E, Sheppard RA (2001) The crystal chemistry of zeolites. In D.L. Bish and D.W. Ming, Eds., Natural Zeolites: Occurrence, properties, application. Rev Mineral Geochem 45: pp. 69–116

  41. Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, 2nd edn, pp. 224, ISBN: 9780521257916

  42. Price RE, Pichler T (2006) Abundance and mineralogical association of arsenic in the Suwannee Limestone (Florida): Implications for arsenic release during water-rock interaction. Chem Geol 228:44–56

    Article  Google Scholar 

  43. Putz H (2016) MATCH! - Phase Identification from Powder Diffraction Data, Version 3.1.1; Copyright 2003–2016. Crystal Impact; Bonn, Germany

  44. Renac C, Gal F, Ménot RP, Squarcioni P, Perrache Ch (2009) Mean recharge times and chemical modelling transfers from shallow groundwater to mineralized thermal waters at Montrond-les-Bains, Eastern Massif Central, France. J Hydrol 376:1–15

    Article  Google Scholar 

  45. Renac C, Michon G, Gonord H, Gerbe MC (2013a) Intracontinental Miocene: Climate and paleolake volumes in the Forez Basin, France (Part I). Sed Geol 288:1–15

    Article  Google Scholar 

  46. Renac C, Bodergat AM, Gerbe MC, Fr G (2013b) Intracontinental Miocene: Reconstruction of hydrology and paleoclimate change in the Forez Basin, France (Part II). Sed Geol 288:16–39

    Article  Google Scholar 

  47. Rickard D (2012a) Sulfidic sediments and sedimentary rocks. Amsterdam. Elsevier. pp. 801. ISBN: 9780444529893.

  48. Rickard D (2012) Aqueous metal-sulfide chemistry. Complexes, Clusters and Nanoparticles. Dev Sedimentol 65:124–191

    Google Scholar 

  49. Robinson R (1973) Sulfur isotopic equilibrium during sulfur hydrolysis at high temperature. Earth Planet Sci Lett 18:443–450

    Article  Google Scholar 

  50. Roisnel T, Rodriguez-Carvajal J (2000) WinPLOTR: a Windows tool for powder diffraction patterns analysis Materials Science Forum. In: R. Delhez and E.J. Mittenmeijer (eds) Proceedings of the seventh European powder diffraction conference (EPDIC 7), pp 118–123

  51. Saez A, Cabrera L (2002) Sedimentological and palaeohydrological responses to tectonics and climate in a small, closed, lacustrine system: Oligocene As Pontes Basin (Spain). Sedimentology 49:1073–1094

    Article  Google Scholar 

  52. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  53. Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem Geol 175:29–48

    Article  Google Scholar 

  54. Sim MS, Bosak T, Ono S (2011) Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77

    Article  Google Scholar 

  55. Sim MS, Bosak T, Ono S (2012) Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction. Appl Environ Microbiol 78:8368–8376

    Article  Google Scholar 

  56. Stucker VK, Silverman DR, Williams KH, Sharp JO, Ranville JF (2014) Thioarsenic species associated with increased arsenic release during biostimulated subsurface sulfate reduction. Environ Sci Technol 48:13367–13375

    Article  Google Scholar 

  57. Suess E, Wallschläger D, Planer-Friedrich B (2011) Stabilization of thioarsenates in iron-rich waters. Chemosphere 83:1524–1531

    Article  Google Scholar 

  58. Takahashi Y, Manceau A, Geoffroy N, Marcus MA, Usui A (2007) Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim et Cosmochim Acta 71:984–1008

    Article  Google Scholar 

  59. Thomas C, Frossard V, Perga ME, Tofield-Pasche N, Hofmann H, Dubois N, Belkina N, Zobkova M, Robert S, Lyautey E (2019) Lateral variations and vertical structure of the microbial methane cycle in the sediment of Lake Onego (Russia). Inland Waters 9:205–226. https://doi.org/10.1080/20442041.2018.1500227

    Article  Google Scholar 

  60. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleo-redox and paleo-productivity proxies: An update. Chem Geol 232:12–32

    Article  Google Scholar 

  61. Utrilla R, Vazquez A, Anadon P (1998) Paleohydrology of the Upper Miocene Bicorb Lake (eastern Spain) as inferred from stable isotopic data from inorganic carbonates. Sed Geol 121:191–206

    Article  Google Scholar 

  62. Vieillard P (1994) Prediction of enthalpy of formation based on refined crystal structures of multisite compounds: part 2. application to minerals belonging to the system Li2O-Na2O-K2O-BeO-MgO-CaO-MnO-FeO-Fe2O3-Al2O3-SiO2-H2O. Results and discussion. Geochim et Cosmochim Acta 58:4065–4107

    Article  Google Scholar 

  63. Warren JK (2010) Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci Rev 98:217–268

    Article  Google Scholar 

  64. Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium. 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 82:159–186

    Article  Google Scholar 

  65. Yao W, Millero FJ (1993) The rate of sulfide oxidation by δMnO2 in seawater. Geochim et Cosmochim Acta 57:3359–3365

    Article  Google Scholar 

  66. Yao W, Millero FJ (1995) The Chemistry of the Anoxic Waters in the Framvaren Fjord, Norway. Aquat 1:53–88

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for technical support with XRD (E. Brecht, UFRGS) and SEM (I. Levy and F.R. Oberhaensli, IAEA, NAEL in Monaco). The IAEA is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories. Authors are also grateful to H. Zouzou, O. Diallo and D. A. Diallo (BSc students), J-P. Goudour and M. Zanti for their technical assistance and T. A. Neubauer from the Naturhistorisches Museum Wien for identification of gastropods. We also thank the anonymous reviewers, Camille Thomas and the editorial board of Journal of Paleolimnology for their comments on the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christophe Renac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renac, C., Barats, A., Mexias, A. et al. Oxic and post-oxic chemical changes related to eogenesis and mesogenesis in a Miocene paleolake. J Paleolimnol (2020). https://doi.org/10.1007/s10933-020-00131-3

Download citation

Keywords

  • Miocene
  • Eogenesis to mesogenesis
  • Oxic and anoxic cement
  • Geochemistry