Advertisement

Journal of Paleolimnology

, Volume 60, Issue 3, pp 399–412 | Cite as

Tracking past mining activity using trace metals, lead isotopes and compositional data analysis of a sediment core from Longemer Lake, Vosges Mountains, France

  • Anne-Lise Mariet
  • Fabrice Monna
  • Frédéric Gimbert
  • Carole Bégeot
  • Christophe Cloquet
  • Simon Belle
  • Laurent Millet
  • Damien Rius
  • Anne-Véronique Walter-Simonnet
Original paper

Abstract

A 157-cm-long sediment core from Longemer Lake in the Vosges Mountains of France spans the past two millennia and was analyzed for trace metal content and lead isotope composition. Trace metal accumulation rates highlight three main input phases: Roman Times (cal. 100 BC–AD 400), the Middle Ages (cal. AD 1000–1500), and the twentieth century. Atmospheric contamination displays a pattern that is similar to that seen in peat bogs from the region, at least until the eighteenth century. Thereafter, the lake sediment record is more precise than peat records. Some regional mining activity, such as that in archaeologically identified eighteenth-century mining districts, was detected from the lead isotope composition of sediment samples. Compositional data analysis, using six trace metals (silver, arsenic, cadmium, copper, lead and zinc), enabled us to distinguish between background conditions, periods of mining, and of other anthropogenic trace metal emissions, such as the recent use of leaded gasoline.

Keywords

Lake Atmospheric deposition Smelting Sediment core Paleopollution 

Notes

Acknowledgements

This work was supported by the Agence de l’Eau Rhin-Meuse and by a grant from the French “Agence de l’Environnement et de la Maîtrise de l’Energie” (ADEME) and the Conseil Régional de Franche-Comté. We are grateful to the anonymous reviewers whose judicious comments greatly improved the manuscript.

Supplementary material

10933_2018_29_MOESM1_ESM.pdf (223 kb)
Supplementary material 1 (PDF 224 kb)

References

  1. Aebischer S, Cloquet C, Carignan J, Maurice C, Pienitz R (2015) Disruption of the geochemical metal cycle during mining: multiple isotope studies of lake sediments from Schefferville, subarctic Québec. Chem Geol 412:167–178.  https://doi.org/10.1016/j.chemgeo.2015.07.028 CrossRefGoogle Scholar
  2. Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc Ser B (Stat Methodol) 44:139–177.  https://doi.org/10.2307/2345821 Google Scholar
  3. Aitchison J (1986) The statistical analysis of compositional data, monographs on statistics and applied probability. Chapman and Hall, LondonCrossRefGoogle Scholar
  4. Aitchison J, Greenacre M (2002) Biplots of compositional data. J R Stat Soc Ser C Appl Stat 51:375–392CrossRefGoogle Scholar
  5. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8.  https://doi.org/10.1016/S0341-8162(78)80002-2 CrossRefGoogle Scholar
  6. Bäckström M, Bohlin H, Karlsson S, Holm NG (2006) Element (Ag, Cd, Cu, Pb, Sb, Tl and Zn), element ratio and lead isotope profiles in a sediment affected by a mining operation episode during the late 19th century. Water Air Soil Pollut 177:285–311.  https://doi.org/10.1007/s11270-006-9175-1 CrossRefGoogle Scholar
  7. Belle S, Verneaux V, Mariet A-L, Millet L (2017) Impact of eutrophication on the carbon stable-isotopic baseline of benthic invertebrates in two deep soft-water lakes. Freshw Biol.  https://doi.org/10.1111/fwb.12931 Google Scholar
  8. Bindler R, Rydberg J (2016) Revisiting key sedimentary archives yields evidence of a rapid onset of mining in the mid-13th century at the Great Copper Mountain, Falun, Sweden. Archaeometry 58(4):642–658.  https://doi.org/10.1111/arcm.12192 CrossRefGoogle Scholar
  9. Bindler R, Segerström U, Pettersson-Jensen I-M, Berg A, Hansson S, Holmström H, Olsson K, Renberg I (2011) Early medieval origins of iron mining and settlement in central Sweden: multiproxy analysis of sediment and peat records from the Norberg mining district. J Archaeol Sci 38(2):291–300.  https://doi.org/10.1016/j.jas.2010.09.004 CrossRefGoogle Scholar
  10. Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518.  https://doi.org/10.1016/j.quageo.2010.01.002 CrossRefGoogle Scholar
  11. Boutron CF, Candelone J-P, Hong S (1995) Greenland snow and ice cores: unique archives of large-scale pollution of the troposphere of the Northern Hemisphere by lead and other heavy metals. Sci Total Environ 160–161:233–241.  https://doi.org/10.1016/0048-9697(95)04359-9 CrossRefGoogle Scholar
  12. Brännvall M-L, Bindler R, Emteryd O, Nilsson M, Renberg I (1997) Stable isotope and concentration records of atmospheric lead pollution in Peat and lake sediments in Sweden. Water Air Soil Pollut 100:243–252.  https://doi.org/10.1023/A:1018360106350 CrossRefGoogle Scholar
  13. Brännvall M-L, Bindler R, Renberg I (1999) The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in Northern Europe. Environ Sci Technol 33:4391–4395CrossRefGoogle Scholar
  14. Cloquet C, Carignan J, Libourel G (2006) Atmospheric pollutant dispersion around an urban area using trace metal concentrations and Pb isotopic compositions in epiphytic lichens. Atmos Environ 40:574–587.  https://doi.org/10.1016/j.atmosenv.2005.09.073 CrossRefGoogle Scholar
  15. Cloquet C, Estrade N, Carignan J (2015) Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in northeastern France. Comptes Rendus Geosci 347:257–266.  https://doi.org/10.1016/j.crte.2015.04.003 CrossRefGoogle Scholar
  16. Cooke CA, Abbott MB, Wolfe AP, Kittleson JL (2007) A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes. Environ Sci Technol 41:3469–3474CrossRefGoogle Scholar
  17. De Muynck D, Cloquet C, Smits E, de Wolff FA, Quitté G, Moens L, Vanhaecke F (2007) Lead isotopic analysis of infant bone tissue dating from the Roman era via multicollector ICP–mass spectrometry. Anal Bioanal Chem 390:477–486.  https://doi.org/10.1007/s00216-007-1679-z CrossRefGoogle Scholar
  18. De Vleeschouwer F, Le Roux G, Shotyk W (2010) Peat as an archive of atmospheric pollution and environmental change: a case study of lead in Europe. Holocene 51:11–19Google Scholar
  19. De Vleeschouwer F, Vanneste H, Mauquoy D, Piotrowska N, Torrejon F, Roland T, Stein A, Le Roux G (2014) Emissions from pre-Hispanic metallurgy in the South American atmosphere. PLoS ONE 9(10):e11315.  https://doi.org/10.1371/journal.pone.0111315 CrossRefGoogle Scholar
  20. Eades LJ, Farmer JG, MacKenzie AB, Kirika A, Bailey-Watts AE (2002) Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland. Sci Total Environ 292:55–67.  https://doi.org/10.1016/S0048-9697(02)00026-8 CrossRefGoogle Scholar
  21. Farmer JG, MacKenzie AB, Sugden CL, Edgar PJ, Eades LJ (1997) A comparison of the historical lead pollution records in peat and freshwater lake sediments from central Scotland. Water Air Soil Pollut 100:253–270CrossRefGoogle Scholar
  22. Farmer JG, MacKenzie AB, Graham MC, Macgregor K, Kirika A (2015) Development of recent chronologies and evaluation of temporal variations in Pb fluxes and sources in lake sediment and peat cores in a remote, highly radiogenic environment, Cairngorm Mountains, Scottish Highlands. Geochim Cosmochim Acta 156:25–49.  https://doi.org/10.1016/j.gca.2015.02.003 CrossRefGoogle Scholar
  23. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York, p 589Google Scholar
  24. Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. Environmetrics 20:621–632.  https://doi.org/10.1002/env.966 CrossRefGoogle Scholar
  25. Fluck P (2000) Sainte-Marie-aux-Mines ou Les mines du rêve. Une monographie des mines d’argent. Les Editions du Patrimoine Minier, SoultzGoogle Scholar
  26. Fluck P, Ménillet F, Hameurt J, Von Eller JP, Zinglé JB, Théobald N, Flageollet JC, Darmois-Theobald M, Hoeblich-Stoehr J, Vogt H (1978) Carte et notice géologiques de la France à 1/50 000, no 341 Gérardmer. Edition du BRGMGoogle Scholar
  27. Forel B, Monna F, Petit C, Bruguier O, Losno R, Fluck P, Begeot C, Richard H, Bichet V, Chateau C (2010) Historical mining and smelting in the Vosges Mountains (France) recorded in two ombrotrophic peat bogs. J Geochem Explor 107:9–20.  https://doi.org/10.1016/j.gexplo.2010.05.004 CrossRefGoogle Scholar
  28. Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467CrossRefGoogle Scholar
  29. Hong S, Candelone J-P, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265:1841–1843.  https://doi.org/10.1126/science.265.5180.1841 CrossRefGoogle Scholar
  30. Kempter H, Frenzel B (2000) The impact of early mining and smelting on the local tropospheric aerosol detected in ombrotrophic peat bogs in the Harz, Germany. Water Air Soil Pollut 121(1–4):93–108.  https://doi.org/10.1023/A:1005253716497 CrossRefGoogle Scholar
  31. Kreiser AM, Anderson NJ, Appleby PG, Battarbee RW, Patrick ST, Rippey B, Rose NL (1992) A paleolimnological study of water quality of lakes in Vosges Mountains of France. Report to the University of Bordeaux by ENSIS Ltd, London, p 86Google Scholar
  32. Lahd Geagea M, Stille P, Gauthier-Lafaye F, Perrone T, Aubert D (2008) Baseline determination of the atmospheric Pb, Sr and Nd isotopic compositions in the Rhine valley, Vosges mountains (France) and the Central Swiss Alps. Appl Geochem 23:1703–1714.  https://doi.org/10.1016/j.apgeochem.2008.02.004 CrossRefGoogle Scholar
  33. Liu X, Jiang S, Zhang P, Xu L (2012) Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments. Environ Pollut 160:161–168.  https://doi.org/10.1016/j.envpol.2011.09.019 CrossRefGoogle Scholar
  34. Manhès G, Allègre CJ, Dupré B, Hamelin B (1980) Lead isotope study of basic-ultrabasic layered complexes: speculations about the age of the Earth and primitive mantle characteristics. Earth Planet Sci Lett 47:370–382CrossRefGoogle Scholar
  35. Marcoux E (1987) Isotopes du plomb et paragenèses métalliques. Traceurs de l’histoire des gîtes minéraux. Document du BRGM, no. 117 (in French) Google Scholar
  36. Mariet A-L, Bégeot C, Gimbert F, Gauthier J, Fluck P, Walter-Simonnet A-V (2016) Past mining activities in the Vosges Mountains (eastern France): Impact on vegetation and metal contamination over the past millennium. Holocene 26:1225–1236.  https://doi.org/10.1177/0959683616638419 CrossRefGoogle Scholar
  37. Martínez Cortizas A, López-Merino L, Bindler R, Mighall T, Kylander M (2013) Atmospheric Pb pollution in N Iberia during the Late Iron Age/Roman times reconstructed using the high-resolution record of La Molina Mire (Asturias, Spain). J Paleolimnol 50(1):71–86.  https://doi.org/10.1007/s10933-013-9705-y CrossRefGoogle Scholar
  38. Ménillet F, Fluck P (1976) Carte et notice géologiques de la France à 1/50 000, no 377 Munster. Edition du BRGMGoogle Scholar
  39. Meriläinen JJ, Kustula V, Witick A (2011) Lead pollution history from 256 BC to AD 2005 inferred from the Pb isotope ratio (206Pb/207Pb) in a varve record of Lake Korttajärvi in Finland. J Paleolimnol 45:1–8.  https://doi.org/10.1007/s10933-010-9473-x CrossRefGoogle Scholar
  40. Meyer C, Diaz-de-Quijano M, Monna F, Franchi M, Toussaint ML, Gilbert D, Bernard N (2015) Characterisation and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem. Atmos Environ 101:286–293.  https://doi.org/10.1016/j.atmosenv.2014.11.041 CrossRefGoogle Scholar
  41. Mighall T, Martínez Cortizas A, Sánchez NS, Foster ID, Singh S, Bateman M, Pickin J (2014) Identifying evidence for past mining and metallurgy from a record of metal contamination preserved in an ombrotrophic mire near Leadhills, SW Scotland, UK. Holocene 24:1719–1730.  https://doi.org/10.1177/0959683614551228 CrossRefGoogle Scholar
  42. Monna F, Lancelot J, Croudace IW, Cundy AB, Lewis JT (1997) Pb isotopic composition of airborne particulate material from France and the southern United Kingdom: implications for Pb pollution sources in urban areas. Environ Sci Technol 31:2277–2286CrossRefGoogle Scholar
  43. Monna F, Clauer N, Toulkeridis T, Lancelot JR (2000a) Influence of anthropogenic activity on the lead isotope signature of Thau Lake sediments (southern France): origin and temporal evolution. Appl Geochem 15:1291–1305.  https://doi.org/10.1016/S0883-2927(99)00117-1 CrossRefGoogle Scholar
  44. Monna F, Hamer K, Lévêque J, Sauer M (2000b) Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). J Geochem Explor 68:201–210CrossRefGoogle Scholar
  45. Monna F, Petit C, Guillaumet J-P, Jouffroy-Bapicot I, Blanchot C, Dominik J, Losno R, Richard H, Lévêque J, Chateau C (2004) History and environmental impact of mining activity in celtic Aeduan Territory recorded in a peat bog (Morvan, France). Environ Sci Technol 38:665–673.  https://doi.org/10.1021/es034704v CrossRefGoogle Scholar
  46. Moor HC, Schaller T, Sturm M (1996) Recent changes in stable lead isotope ratios in sediments of Lake Zug, Switzerland. Environ Sci Technol 30:2928–2933.  https://doi.org/10.1021/es950895t CrossRefGoogle Scholar
  47. Nriagu JO (1996) History of global metal pollution. Science 272:223CrossRefGoogle Scholar
  48. Outridge PM, Rausch N, Percival JB, Shotyk W, McNeely R (2011) Comparison of mercury and zinc profiles in peat and lake sediment archives with historical changes in emissions from the Flin Flon metal smelter, Manitoba, Canada. Sci Total Environ 409:548–563.  https://doi.org/10.1016/j.scitotenv.2010.10.041 CrossRefGoogle Scholar
  49. Pasquet C, Le Monier P, Monna F, Durlet C, Brigaud B, Losno R, Chateau C, Laporte-Magoni C, Gunkel-Grillon P (2016) Impact of nickel mining in New Caledonia assessed by compositional data analysis of lichens. SpringerPlus 5:2022.  https://doi.org/10.1186/s40064-016-3681-4 CrossRefGoogle Scholar
  50. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org. Accessed 23 Oct 2014
  51. Renberg I, Persson MW, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326.  https://doi.org/10.1038/368323a0 CrossRefGoogle Scholar
  52. Renberg I, Bindler R, Brännvall M-L (2001) Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 11(5):511–516.  https://doi.org/10.1191/095968301680223468 CrossRefGoogle Scholar
  53. Renberg I, Brännvall M-L, Bindler R, Emteryd O (2002) Stable lead isotopes and lake sediments—a useful combination for the study of atmospheric lead pollution history. Sci Total Environ 292:45–54.  https://doi.org/10.1016/S0048-9697(02)00032-3 CrossRefGoogle Scholar
  54. Roodbergen M, Klok C, van der Hout A (2008) Transfer of heavy metals in the food chain earthworm Black-tailed godwit (Limosa limosa): comparison of a polluted and a reference site in The Netherlands. Sci Total Environ 406:407–412.  https://doi.org/10.1016/j.scitotenv.2008.06.051 CrossRefGoogle Scholar
  55. Rosman KJR, Chisholm W, Hong S, Candelone J-P, Boutron CF (1997) Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland Ice dated from 600 B.C. to 300 A.D. Envir Sci Technol 31:3413–3416.  https://doi.org/10.1021/es970038k CrossRefGoogle Scholar
  56. Shotyk W, Cheburkin AK, Appleby PG, Fankhauser A, Kramers JD (1997) Lead in three peat bog profiles, Jura Mountains, Switzerland: enrichment factors, isotopic composition, and chronology of atmospheric deposition. Water Air Soil Pollut 100:297–310CrossRefGoogle Scholar
  57. Shotyk W, Weiss D, Kramers JD, Frei R, Cheburkin AK, Gloor M, Reese S (2001) Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochim Cosmochim Acta 65:2337–2360CrossRefGoogle Scholar
  58. Thevenon F, Guédron S, Chiaradia M, Loizeau J-L, Poté J (2011) (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes. Quat Sci Rev 30:224–233.  https://doi.org/10.1016/j.quascirev.2010.10.013 CrossRefGoogle Scholar
  59. Thirlwall MF (2002) Multicollector ICP-MS analysis of Pb isotopes using a 207pb–204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem Geol 184:255–279.  https://doi.org/10.1016/S0009-2541(01)00365-5 CrossRefGoogle Scholar
  60. van den Boogart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R. In use R!. Springer, Berlin, Heidelberg, Freiberg, GermanyGoogle Scholar
  61. Walraven N, van Os BJH, Klaver GT, Middelburg JJ, Davies GR (2014) Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: a Pb isotope study. Sci Total Environ 484:185–195.  https://doi.org/10.1016/j.scitotenv.2014.02.062 CrossRefGoogle Scholar
  62. White WM, Albarède F, Télouk P (2000) High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem Geol 167:257–270.  https://doi.org/10.1016/S0009-2541(99)00182-5 CrossRefGoogle Scholar
  63. Yafa C, Farmer JG (2006) A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Anal Chim Acta 557:296–303.  https://doi.org/10.1016/j.aca.2005.10.043 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Anne-Lise Mariet
    • 1
  • Fabrice Monna
    • 2
  • Frédéric Gimbert
    • 1
  • Carole Bégeot
    • 1
  • Christophe Cloquet
    • 3
  • Simon Belle
    • 1
  • Laurent Millet
    • 1
  • Damien Rius
    • 1
  • Anne-Véronique Walter-Simonnet
    • 1
  1. 1.Chrono-Environment, UMR CNRS 6249University of Bourgogne Franche-ComtéBesançon CedexFrance
  2. 2.ARTéHIS, UMR 6298, CNRSUniversity of Bourgogne Franche-ComtéDijonFrance
  3. 3.CRPG-CNRSVandoeuvre-lès-NancyFrance

Personalised recommendations