Advertisement

Journal of Paleolimnology

, Volume 59, Issue 3, pp 309–327 | Cite as

The role of topography, river size and riverbed grain size on the preservation of riverine mollusk shells

  • Alcemar Rodrigues Martello
  • Carla Bender Kotzian
  • Fernando Erthal
Original paper

Abstract

The degree to which a group of fossils reflects the original community from which it was derived can be estimated by comparing living communities with locally accumulated dead remains. Such live–dead approaches (LA/DA) can provide important baseline information on the ecological structure of ancient freshwater systems. This study explored variations in composition, richness, evenness and rank-abundance in live and dead mollusk assemblages recovered from the Ibicuí River Basin, southern Brazil. LA/DA was related to topography, river size, and sediment grain size, separated respectively into plain (altitude 0–100 m) versus slope (100–500 m), small versus medium-large stream orders, and gravel versus sand substrate. Positive correlation between LA and DA species composition was significant only in large rivers. Slope areas showed LA/DA species compositions that were significantly different, whereas the communities from sand and gravel substrates were quite similar. Important factors that affected live/dead similarity in the study area included (1) destruction of thin, fragile shells of dead animals by acidic waters that are common in the region, (2) downstream drift of small spherical shells from species common in slope areas, such as Potamolithus sp., and (3) high abundances of invasive species in the local death assemblage, especially in large rivers. High fidelity in large rivers is caused by the presence of favorable habitats for bivalve communities. Coarse sediments are an important driver of macro invertebrate diversity, acting as shell traps that slow the downstream drift of bivalve remains and improve the preservation of fluvial mollusks. The preservation potential of dead assemblages of the Ibicuí River showed that fossil assemblages are useful tools for recognizing ancient riverscapes, such as flat areas with sandy substrates.

Keywords

Quantitative fidelity Fluvial habitat Spatial scale Bivalve Gastropod Paleoecology 

Notes

Acknowledgements

We thank Maria Cristina Dreher Mansur (Universidade Federal do Rio Grande do Sul) and Rosane Lanzer (Universidade de Caxias do Sul) for identifications of Pisidium and Ancylini. Special thanks to Andréa Salvarrey, Bruna Braun, Elisangela Secretti, Elzira Floss, Mateus Pires, Nícolas Figueiredo, Roger de Sá, Sarah Freitas and Vanessa Baptista for help during fieldwork. Early versions of this manuscript benefited from discussions with Claudia T. Callil (Universidade Federal do Mato Grosso), Claudio De Francesco (Universidad Nacional de Mar del Plata), Luiz U. Hepp (Universidade Regional Integrada at Erechim), and an unknown reviewer. The manuscript also benefited from a careful revision by Mark Brenner (Editor in Chief). This research was part of the doctoral thesis of A. Martello at the UFSM. CAPES provided financial support for this study.

References

  1. Albano PG, Sabelli B (2011) Comparison between death and living molluscs assemblages in a Mediterranean infra littoral off-shore reef. Palaeogeog Palaeoclimat Palaeoecol 310:206–215CrossRefGoogle Scholar
  2. Albano PG, Filippova N, Steger J, Kaufman DS, Tomašových A, Stachowitsch M, Zuschin M (2016) Oil platforms in the Persian (Arabian) Gulf: living and death assemblages reveal no effects. Cont Shelf Res 121:21–34CrossRefGoogle Scholar
  3. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Ann Rev Ecol Evol Syst 35:257–284CrossRefGoogle Scholar
  4. Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer, New YorkCrossRefGoogle Scholar
  5. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693CrossRefGoogle Scholar
  6. Archuby FM, Adami M, Martinelli JC, Gordillo S, Boretto GM, Malve ME (2015) Regional-scale compositional and size fidelity of rocky intertidal communities from the Patagonian Atlantic Coast. Palaios 30:627–643CrossRefGoogle Scholar
  7. Bonetto AA, Di Persia DH (1975) Las poblaciones de pelecípodos del Arroyo Ayuí Grande (Prov. Entre Ríos) y los factores que regulan su distribución y estructura. Ecosur 3:123–151Google Scholar
  8. Castillo AR, Brasil LG, Querol E, Querol MVM, Oliveira EV, Mansur MCD (2007) Moluscos bivalves da localidade de São Marcos, bacia do médio rio Uruguai, Uruguaiana, Brasil. Biotemas 20:73–79Google Scholar
  9. Chao A, Chazdon RL, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  10. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  11. Cummins RH (1994) Taphonomic process in modern freshwater molluscan death assemblages: implications for the freshwater fossil record. Palaeogeog Palaeoclimat Palaeoecol 108:55–73CrossRefGoogle Scholar
  12. De Francesco CG, Hassan GS (2009) The significance of molluscs as paleoecological indicators of freshwater systems in central-western Argentina. Palaeogeog Palaeoclimat Palaeoecol 274:105–113CrossRefGoogle Scholar
  13. Erthal F, Kotzian CB, Simões MG (2011) Fidelity of molluscan assemblages from the Touro Passo Formation (Pleistocene-Holocene), southern Brazil: taphonomy as a tool for discovering natural baselines for freshwater communities. Palaios 26:443–446CrossRefGoogle Scholar
  14. Erthal F, Kotzian CB, Simões MG (2015) Multistep taphonomic alterations in fluvial mollusk shells: a case study in the Touro Passo Formation (Pleistocene-Holocene), Southern Brazil. Palaios 30:388–402CrossRefGoogle Scholar
  15. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, OxfordGoogle Scholar
  16. IBGE (2002) http://www.ibge.gov.br. Access in 25 August 2012
  17. Jurkiewicz-Karnkowska E (2006) Communities of aquatic molluscs in floodplain water bodies of lowland river (Bug River, east Poland). Polish J Ecol 54:253–266Google Scholar
  18. Kidwell SM (2002) Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803–806CrossRefGoogle Scholar
  19. Kidwell SM (2013) Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487–522CrossRefGoogle Scholar
  20. Kidwell SM, Bosence DWJ (1991) Taphonomy and time averaging of marine shelly faunas. In: Allison PA, Briggs DE (eds) Taphonomy, releasing the data locked in the fossil record. Topics in Geobiology. Plenum, New York, pp 115–209Google Scholar
  21. Kidwell SM, Flessa KW (1996) The quality of the fossil record: populations, species and communities. Ann Rev Earth Planet Sci 24:433–464CrossRefGoogle Scholar
  22. Kidwell SM, Tomasovych A (2013) Implications of time-averaged death assemblages for ecology and conservation biology. Ann Rev Ecol Evol Syst 44:539–563CrossRefGoogle Scholar
  23. Kotzian CB, Amaral AMB (2013) Diversity and distribution of mollusks along the Contas River in a tropical semiarid region (Caatinga), Northeastern Brazil. Biota Neotrop 13:299–314CrossRefGoogle Scholar
  24. Kotzian CB, Simões MG (2006) Taphonomic signatures of the recent freshwater mollusks, Touro Passo Stream, RS, Brazil. Rev Bras Paleontol 9:243–260CrossRefGoogle Scholar
  25. Kowalewski M, Carroll M, Casazza L, Gupta NS, Hannisdal B, Hendy A, Krause RA, Labarbera M, Lazo DG, Messina C, Puchalski S, Rothfus TA, Sälgeback J, Stempien J, Terry RC, Tomasovych A (2003) Quantitative fidelity of Brachiopod-Mollusk assemblages from modern subtidal environments of San Juan Islands, USA. J Taphon 1:43–65Google Scholar
  26. Lanzer RM (1996) Ancylidade (Gastropoda, Basommatophora) na América do Sul: sistemática e distribuição. Revista Brasileira de Zoologia 13:175–210CrossRefGoogle Scholar
  27. Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  28. Leps M, Tonkin JD, Dahm V, Haase P, Sunderman A (2015) Disentangling environmental drivers of benthic invertebrate assemblages: the role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Sci Total Environ 536:546–556CrossRefGoogle Scholar
  29. Lewin I (2006) The gastropod communities in the lowland Rivers of agricultural areas—their biodiversity and bioindicative value in the Ciechanowska upland, Central Poland. Malacologia 49:7–23CrossRefGoogle Scholar
  30. Lewis DB, Magnuson JJ (2000) Landscape spatial patterns in freshwater snail assemblages across Northern Highland catchments. Freshw Biol 43:409–420CrossRefGoogle Scholar
  31. Maltchik L, Stenert C, Kotzian CB, Pereira D (2010) Responses of freshwater mollusks to environmental factors in Southern Brazil wetlands. Braz J Biol 70:473–482CrossRefGoogle Scholar
  32. Maluf JRT (2000) Nova classificação climática do Estado do Rio Grande do Sul. Rev Bras Agrometeorol 8:141–150Google Scholar
  33. Mansur MCD, Pereira D (2006) Bivalves límnicos da bacia do rio dos Sinos, Rio Grande do Sul, Brasil (Bivalvia, Unionoida, Veneroida e Mytiloida). Rev Bras Zool 23:1123–1147CrossRefGoogle Scholar
  34. Mansur MCD, Valer RM, Aires NCM (1994) Distribuição e preferências ambientais dos moluscos bivalves do açude do parque de proteção ambiental COPESUL, município de Triunfo, Rio Grande do Sul, Brasil. Biociências 2:27–45Google Scholar
  35. Marchiori JNC (2004) Fitogeografia do Rio Grande do Sul: enfoque histórico e sistemas de classificação. EST Editora, Porto AlegreGoogle Scholar
  36. Martello AR, Kotzian CB, Simões MG (2006) Quantitative fidelity of Recent freshwater mollusk assemblages from the Touro Passo River, Rio Grande do Sul. Iheringia Ser Zool 96:453–465CrossRefGoogle Scholar
  37. Martello AR, Hepp LU, Kotzian CB (2014) Distribution and additive partitioning of diversity in freshwater mollusk communities in Southern Brazilian streams. Rev Biol Trop 62:33–44CrossRefGoogle Scholar
  38. McMahon RF, Bogan AE (2001) Mollusca: Bivalvia. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego, pp 331–429CrossRefGoogle Scholar
  39. Mouthon J (1998) Longitudinal organization of the mollusc species in a theoretical French river. Hydrobiologia 390:117–128CrossRefGoogle Scholar
  40. Newell AJ, Gower DK, Benton MJ, Tverdokhlebov VP (2007) Bedload abrasion and the in situ fragmentation of bivalve shells. Sedimentology 54:835–845CrossRefGoogle Scholar
  41. Olszewski TD, Kidwell SM (2007) The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:1–23CrossRefGoogle Scholar
  42. Pereira D, Inda LA, Consoni JM, Konrad HG (2001) Composição e abundancia de espécies de moluscos do bentos marginal da microbacia do arroio Capivara, Triunfo, RS, Brasil. Biociências 9:3–20Google Scholar
  43. Pereira D, Arruda JO, Menegat R, Porto ML, Schwarzbold A, Hartz SM (2011) Guildas tróficas, composição e distribuição de espécies de moluscos límnicos no gradiente fluvial de um riacho subtropical brasileiro. Biotemas 24:21–36CrossRefGoogle Scholar
  44. Pereira D, Mansur MCD, Duarte LDS, Oliveira AS, Pimpão DM, Callil CT, Ituarte C, Parada E, Peredo S, Darrigran G, Scarabino F, Clavijo C, Lara G, Miyahira IC, Rodriguez MTR, Lasso C (2013) Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 718:1–30CrossRefGoogle Scholar
  45. Pfeifer NTS, Pitoni VLL (2003) Análise qualitativa estacional da fauna de moluscos límnicos do delta do Jacuí, Rio Grande do Sul, Brasil. Biociências 11:145–158Google Scholar
  46. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  47. Ritter MN, Erthal F (2013) Fidelity bias in mollusk assemblages from coastal lagoons of southern Brazil. Rev Bras Paleontol 16:225–236CrossRefGoogle Scholar
  48. Ritter MN, Erthal F, Coimbra JC (2013) Taphonomic signatures in molluscan fossil assemblages from the Holocene lagoon system in the northern part of the coastal plain, Rio Grande do Sul State, Brazil. Quat Int 305:5–14CrossRefGoogle Scholar
  49. Robaina LES, Trentin R, Laurent F, Scotti AAV (2015) Zoneamento morfolitológico da bacia hidrográfica do Rio Ibicuí e sua relação com processos superficiais e o uso do solo. Rev Bras Geomorfol 16:63–77CrossRefGoogle Scholar
  50. Sá RL, Santin L, Amaral AMB, Martello AR, Kotzian CB (2013) Diversidade de moluscos em riachos de uma região de encosta no extremo sul do Brasil. Biota Neotrop 13:213–221CrossRefGoogle Scholar
  51. Strahler NA (1957) Quantitative analysis of watershed geomorphology. Trans Am Geoph Union 38:913–920CrossRefGoogle Scholar
  52. Strayer DL, Hunter DC, Smith LC, Borg CK (1994) Distribution, abundance, and roles of freshwater clams (Bivalvia, Unionidae) in the freshwater tidal Hudson River. Freshw Biol 31:239–248CrossRefGoogle Scholar
  53. Sturm R (2007) Freshwater molluscs in mountain lakes in Eastern Alps (Austria): relationship between environmental variables and lake colonization. J Limnol 66:160–169CrossRefGoogle Scholar
  54. Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236CrossRefGoogle Scholar
  55. Tietze E, De Francesco CG (2010) Environmental significance of freshwater mollusks in the Southern Pampas, Argentina: to what detail can local environments be inferred from mollusk composition? Hydrobiologia 641:133–143CrossRefGoogle Scholar
  56. Tietze E, De Francesco CG (2017) Compositional fidelity and taphonomy of freshwater mollusks from three pampean shallow lakes of Argentina. Ameghiniana 54:208–233CrossRefGoogle Scholar
  57. Tomašových A, Kidwell SM (2009) Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:119–145CrossRefGoogle Scholar
  58. Tomašových A, Kidwell SM, Barber RF, Kaufman DS (2014) Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819–822CrossRefGoogle Scholar
  59. Tonkin JD, Sundermann A, Jähnig SC, Haase P (2015) Environmental controls on river assemblages at the regional scale: an application of the elements of metacommunity structure framework. PLoS ONE 10(8):e0135450CrossRefGoogle Scholar
  60. Vannote RL, Minshal GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  61. Veitenheimer-Mendes IL, Lopes-Pitoni VL, Silva MC, Almeida-Caon JE, Schroder-Pfeifer NT (1992) Moluscos (Gastropoda e Bivalvia) ocorrentes nas nascentes do rio Gravataí, Rio Grande do Sul, Brasil. Iheringia Ser Zool 73:69–76Google Scholar
  62. Zuschin M, Ebner C (2015) Compositional fidelity of death assemblages from a coral reef-associated tidal-flat and shallow subtidal lagoon in the northern Red Sea. Palaios 30:181–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de BiologiaUniversidade Estadual do ParanáUnião da VitóriaBrazil
  2. 2.Programa de Pós-Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Departamento de Paleontologia e EstratigrafiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations