Can stable oxygen and hydrogen isotopes from Australian subfossil Chironomus head capsules be used as proxies for past temperature change?

Abstract

This paper presents the first systematic investigation of stable isotopes (δ18O and δ2H) from the subfossil chironomid head capsules (HCs) of a single taxon (Chironomus). The study focuses on sixteen south-eastern Australian lakes and investigates the potential of Chironomus spp. HC stable isotopes to reconstruct past temperature changes from these lakes. The relationship between δ18O values of Chironomus spp. HCs from Australian oligotrophic to mesotrophic lakes in humid areas and air temperature appears robust (r = 0.88) and in line with results from European lakes. Similar results were obtained for δ2H values and temperature (r = 0.94). For lakes that are located in semi-arid and sub-humid areas that have high evaporation compared to precipitation, and often long water residence time, the temperature relationship is not robust. This is due to the evaporative enrichment of δ18O values in lake water and the effect of salinity and higher nutrient status. Vital effects may also play a role. The overall findings of this study are that both Chironomus spp. HC δ18O and δ2H are potentially valuable tools for reconstructing temperature in cooler, low nutrient and low salinity lakes of Australia. In warmer, sub-humid to semi-arid regions, δ18O and δ2H may provide valuable information about past changes in hydrological conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Barton AB, Herczeg AL, Dalhaus PG, Cox JW (2007) A geochemical approach to determining the hydrological regime of wetlands in a volcanic plain, south-eastern Australia. In: Groundwater and ecosystems. IAH Congress, Lisbon, p 8

  2. Behar S (1997) Definition of water quality parameters. Testing the waters: chemical and physical vital signs of a river. River Watch Network, Montpelier

    Google Scholar 

  3. Belle S, Verneaux V, Millet L, Parent C, Magny M (2015) A case study of the past CH4 cycle in lakes by the combined use of dual isotopes (carbon and hydrogen) and ancient DNA of methane-oxidizing bacteria: rearing experiment and application to Lake Remoray (eastern France). Aquat Ecol 49:279–291

    Article  Google Scholar 

  4. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  5. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299–1312

    Article  Google Scholar 

  6. Brodersen KP, Pedersen O, Lindegaard C, Hamburger K (2004) Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnol Oceanogr 49:1549–1559

    Article  Google Scholar 

  7. Chang JC, Woodward C, Shulmeister J (2014) A snapshot of the limnology of eastern Australian water bodies spanning the tropics to Tasmania: the land-use, climate, limnology nexus. Mar Freshw Res 65:872–883

    Article  Google Scholar 

  8. Chang J, Shulmeister J, Woodward C (2015a) A chironomid based transfer function for reconstructing summer temperatures in south eastern Australia. Palaeogeogr Palaeoclimatol Palaeoecol 423:109–121

    Article  Google Scholar 

  9. Chang JC, Shulmeister J, Woodward C, Steinberger L, Tibby J, Barr C (2015b) A chironomid-inferred summer temperature reconstruction from subtropical Australia during the last glacial maximum (LGM) and the last deglaciation. Quat Sci Rev 122:282–292

    Article  Google Scholar 

  10. Chivas AR, De Deckker P, Cali JA, Chapman A, Kiss EG, Shelley JM (1993) Coupled stable isotope and trace element measurements of lacustrine carbonates as paleoclimatic indicators. In: Swart PK, Lohmann KC, Mckenzie J, Savin S (eds) Climate change in continental isotopic records. American Geophysical Union, Washington, DC, pp 113–121

    Google Scholar 

  11. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca Raton

    Google Scholar 

  12. Coplen TB (1995) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 24:707–712

    Article  Google Scholar 

  13. Cranston PS (1995) Introduction. In: Armitage PD, Cranston PS, Pinder LCV (eds) The chironomidae. The biology and ecology of non-biting mideges. Chapman and Hall, London, pp 1–7

    Google Scholar 

  14. Deines P, Wooller MJ, Grey J (2009) Unravelling complexities in benthic food webs using a dual stable isotope (hydrogen and carbon) approach. Freshw Biol 54:2243–2251

    Article  Google Scholar 

  15. Eggermont H, Heiri O (2012) The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456

    Article  Google Scholar 

  16. Erez J (1978) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273:199–202

    Article  Google Scholar 

  17. Farquhar G, O’Leary M, Berry J (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9:121–137

    Google Scholar 

  18. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  19. France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  20. Frossard V, Belle S, Verneaux V, Millet L, Magny M (2013) A study of the δ13C offset between chironomid larvae and their exuvial head capsules: implications for palaeoecology. J Paleolimnol 50:379–386

    Article  Google Scholar 

  21. Galat DL, Coleman M, Robinson R (1988) Experimental effects of elevated salinity on three benthic invertebrates in Pyramid Lake, Nevada. Hydrobiologia 158:133–144

    Article  Google Scholar 

  22. García LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  23. Gehre M, Geilmann H, Richter J, Werner RA, Brand WA (2004) Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision. Rapid Commun Mass Spectrom 18:2650–2660

    Article  Google Scholar 

  24. Glew J (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287

    Article  Google Scholar 

  25. Goddeeris BR, Vermeulen AC, De Geest E, Jacobs H, Baert B, Ollevier F (2001) Diapause induction in the third and fourth instar of Chironomus riparius (Diptera) from Belgian lowland brooks. Arch Hydrobiol 150:307–327

    Article  Google Scholar 

  26. Granéli W, Solander D (1988) Influence of aquatic macrophytes on phosphorus cycling in lakes. In: Persson G, Jansson M (eds) Phosphorus in freshwater ecosystems. Springer, Berlin, pp 245–266

    Google Scholar 

  27. Grey J, Kelly A, Jones RI (2004a) High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnol Oceanogr 49:239–240

    Article  Google Scholar 

  28. Grey J, Kelly A, Ward S, Sommerwerk N, Jones RI (2004b) Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life cycle variability. Freshw Biol 49:681–689

    Article  Google Scholar 

  29. Gröcke DR, Schimmelmann A, Elias S, Miller RF (2006) Stable hydrogen-isotope ratios in beetle chitin: preliminary European data and re-interpretation of North American data. Quat Sci Rev 25:1850–1864

    Article  Google Scholar 

  30. Heiri O, Schilder J, van Hardenbroek M (2012) Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges. Fauna Nor S.l 31:7

  31. Henderson AK, Shuman BN (2009) Hydrogen and oxygen isotopic compositions of lake water in the western United States. Geol Soc Am Bull 121:1179–1189

    Article  Google Scholar 

  32. IAEA/WMO (2015) Global network of isotopes in precipitation. The GNIP database. http://www.iaea.org/water. Accessed Oct 2015

  33. Jones MD, Cuthbert MO, Leng MJ, McGowan S, Mariethoz G, Arrowsmith C, Sloane HJ, Humphrey KK, Cross I (2016) Comparisons of observed and modelled lake δ18O variability. Quat Sci Rev 31(Part B):329–340

    Article  Google Scholar 

  34. Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 51–86

    Google Scholar 

  35. Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322

    Article  Google Scholar 

  36. LaZerte BD, Sxulados JE (1982) Stable carbon isotope ratio of submerged freshwater macrophyte. Limnol Oceanogr 27:413–418

    Article  Google Scholar 

  37. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  Google Scholar 

  38. Leng MJ, Lamb AL, Heaton TH, Marshall JD, Wolfe BB, Jones MD, Holmes JA, Arrowsmith C (2006) In: Leng MJ (ed) Isotopes in lake sediments. Isotopes in palaeoenvironmental research. Springer, Berlin, pp 147–184

    Google Scholar 

  39. Lotter AF, Walker IR, Brooks SJ, Hofmann W (1999) An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat Sci Rev 18:717–735

    Article  Google Scholar 

  40. Massaferro J, Larocque-Tobler I, Brooks SJ, Vandergoes M, Dieffenbacher-Krall A, Moreno P (2014) Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based temperature model. Palaeogeogr Palaeoclimatol Palaeoecol 399:214–224

    Article  Google Scholar 

  41. Mayr C, Laprida C, Lücke A, Martín RS, Massaferro J, Ramón-Mercau J, Wissel H (2015) Oxygen isotope ratios of chironomids, aquatic macrophytes and ostracods for lake-water isotopic reconstructions—results of a calibration study in Patagonia. J Hydrol 529(Part 2):600–607

    Article  Google Scholar 

  42. Nielson KE, Bowen GJ (2010) Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition. Geochim Cosmochim Acta 74:1812–1822

    Article  Google Scholar 

  43. Osmulski P, Leyko W (1986) Structure, function and physiological role of chironomus haemoglobin. Comp Biochem Physiol Part B: Biochem Mol Biol 85:701–722

    Article  Google Scholar 

  44. Rees ABH, Cwynar LC (2010) Evidence for early postglacial warming in Mount Field National Park, Tasmania. Quat Sci Rev 29:443–454

    Article  Google Scholar 

  45. Rees AH, Cwynar L, Cranston P (2008) Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J Paleolimnol 40:1159–1178

    Google Scholar 

  46. Riera JL, Magnuson JJ, Kratz TK, Webster KE (2000) A geomorphic template for the analysis of lake districts applied to the Northern Highland Lake District, Wisconsin, U.S.A. Freshw Biol 43:301–318

    Article  Google Scholar 

  47. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr Ser 78:1–36

    Google Scholar 

  48. Samartin S, Heiri O, Vescovi E, Brooks SJ, Tinner W (2012) Lateglacial and early Holocene summer temperatures in the southern Swiss Alps reconstructed using fossil chironomids. J Quat Sci 27:279–289

    Article  Google Scholar 

  49. Schilder J, Tellenbach C, Möst M, Spaak P, van Hardenbroek M, Wooller MJ, Heiri O (2015) The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water. Biogeosciences 12:3819–3830

    Article  Google Scholar 

  50. Schimmelmann A, Miller RF, Leavitt SW (1993) Hydrogen isotopic exchange and stable isotope ratios in cellulose, wood, chitin, and amino compounds. In: Swart PK, Lohmann KC, Mckenzie J, Savin S (eds) Climate change in continental isotopic records. American Geophysical Union, Washington, DC, pp 367–379

    Google Scholar 

  51. Soto DX, Wassenaar LI, Hobson KA (2013) Stable hydrogen and oxygen isotopes in aquatic food webs are tracers of diet and provenance. Funct Ecol 27:535–543

    Article  Google Scholar 

  52. ter Braak C, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5), Microcomputer Power, Itaca. www.canoco.com

  53. Teranes JL, McKenzie JA, Lotter AF, Sturm M (1999) Stable isotope response to lake eutrophication: calibration of a high-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnol Oceanogr 44:320–333

    Article  Google Scholar 

  54. van Hardenbroek M, Heiri O, Grey J, Bodelier PLE, Verbruggen F, Lotter AF (2010) Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes? J Paleolimnol 43:235–245

    Article  Google Scholar 

  55. van Hardenbroek M, Gröcke D, Sauer P, Elias S (2012) North American transect of stable hydrogen and oxygen isotopes in water beetles from a museum collection. J Paleolimnol 48:461–470

    Article  Google Scholar 

  56. van Hardenbroek M, Lotter AF, Bastviken D, Andersen TJ, Heiri O (2014) Taxon-specific δ13C analysis of chitinous invertebrate remains in sediments from Strandsjön, Sweden. J Paleolimnol 52:95–105

    Article  Google Scholar 

  57. van Hardenbroek M, Leuenberger M, Hartikainen H, Okamura B, Heiri O (2016) Bryozoan stable carbon and hydrogen isotopes: relationships between the isotopic composition of zooids, statoblasts and lake water. Hydrobiologia 765:209–223

    Article  Google Scholar 

  58. Verbruggen F, Heiri O, Reichart GJ, De Leeuw JW, Nierop KGJ, Lotter AF (2010a) Effects of chemical pretreatments on δ18O measurements, chemical composition, and morphology of chironomid head capsules. J Paleolimnol 43:857–872

    Article  Google Scholar 

  59. Verbruggen F, Heiri O, Reichart GJ, Lotter AF (2010b) Chironomid δ18O as a proxy for past lake water δ18O: a Lateglacial record from Rotsee (Switzerland). Quat Sci Rev 29:2271–2279

    Article  Google Scholar 

  60. Verbruggen F, Heiri O, Reichart GJ, Blaga C, Lotter AF (2011) Stable oxygen isotopes in chironomid and cladoceran remains as indicators for lake-water δ18O. Limnol Oceanogr 56:2071–2079

    Article  Google Scholar 

  61. von Grafenstein U, Erlernkeuser H, Trimborn P (1999) Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 148:133–152

    Article  Google Scholar 

  62. Walker IR (1987) Chironomidae (Diptera) in paleoecology. Quat Sci Rev 6:29–40

    Article  Google Scholar 

  63. Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925

    Article  Google Scholar 

  64. Wang Y, Francis DR, O’Brien DM, Wooller MJ (2008) A protocol for preparing subfossil chironomid head capsules (Diptera: Chironomidae) for stable isotope analysis in paleoclimate reconstruction and considerations of contamination sources. J Paleolimnol 40:771–781

    Article  Google Scholar 

  65. Wang YV, O’Brien DM, Jenson J, Francis D, Wooller MJ (2009) The influence of diet and water on the stable oxygen and hydrogen isotope composition of Chironomidae (Diptera) with paleoecological implications. Oecologia 160:225–233

    Article  Google Scholar 

  66. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Health Stud 39:211–217

    Article  Google Scholar 

  67. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  68. Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429

    Article  Google Scholar 

  69. Woodward CA, Shulmeister J (2007) Chironomid-based reconstructions of summer air temperature from lake deposits in Lyndon Stream, New Zealand spanning the MIS 3/2 transition. Quat Sci Rev 27:142–154

    Article  Google Scholar 

  70. Wooller MJ, Francis D, Fogel ML, Miller U, Walker IR, Wolfe AP (2004) Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments. J Paleolimnol 31:267–274

    Article  Google Scholar 

  71. Wooller M, Wang YM, Axford Y (2008) A multiple stable isotope record of Late Quaternary limnological changes and chironomid paleoecology from northeastern Iceland. J Paleolimnol 40:63–77

    Article  Google Scholar 

  72. Zhang Z, Sachs JP (2007) Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Org Geochem 38:582–608

    Article  Google Scholar 

  73. Ziveri P, Stoll H, Probert I, Klaas C, Geisen M, Ganssen G, Young J (2003) Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet Sci Lett 210:137–149

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for field work and sample analyses of this work was provided through Australian Research Council Discovery Project Grant DP110103081. We thank the Forensic and Scientific Services (FSS), Queensland Health for water chemistry analyses; Lydia Mackenzie, Abdollah Jarihani for field assistance; the Department of Primary Industries, Water and Environment (DPIWE), the Department of Sustainability and Environment (DSE) and the Department of Environment and Heritage Protection (DEHP) for the permission of sample collection. We also thank Dr. Matthew Jones (Nottingham) for the general discussion about stable isotopes and our data; Tanya Katzman (Purdue) for the assistance in training on the PSI lab high Temperature Conversion Elemental Analyzer (TC/EA) equipment. We thank 2 anonymous reviewers and the editors for their insights and useful comments that greatly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Christine Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, J.C., Shulmeister, J., Woodward, C. et al. Can stable oxygen and hydrogen isotopes from Australian subfossil Chironomus head capsules be used as proxies for past temperature change?. J Paleolimnol 56, 331–348 (2016). https://doi.org/10.1007/s10933-016-9920-4

Download citation

Keywords

  • Chironomid head capsules
  • δ18O
  • δ2H
  • South-east Australia
  • Vital effects
  • Nutrients
  • Salinity
  • Aridity
  • Evaporation
  • Temperature reconstructions