Diatom assemblages reveal regional-scale differences in lake responses to recent climate change at the boreal-tundra ecotone, Manitoba, Canada

Abstract

The direction of pan-Arctic ecosystem shifts in response to climate warming is relatively well understood; however, landscape-level linkages among terrestrial, wetland, and lake ecosystems significantly influence the dynamics of each, making it difficult to generalize about lake responses to warming across the Arctic, and at times difficult to interpret paleoclimate records from lake sediments. To investigate differences in lake responses to recent climate change at the boreal-tundra ecotone, we conducted a 2-year survey of diatom assemblages from lakes with varying catchment characteristics in northern Manitoba, Canada. We investigated whether catchment geomorphology and landscape, including slope and vegetative cover, result in characteristic water chemistries and hence diatom assemblage signatures, which could then be used in paleolimnological studies to infer past changes in the catchment. Forty-four lakes were sampled for water chemistry and catchment vegetation was characterized using Landsat Imagery. Lake catchments were generally small (median 702 ha) and dominated by peat (Sphagnum) with or without lowland forest (Picea-Larix), or open tundra, with different amounts of exposed rock/till, upland forest/woodlands, and burn recovery area. Lakes were generally nutrient-poor, with lower nutrient and DOC concentrations in tundra-dominated catchments, and higher nutrients and DOC in catchments with greater forest cover. A diatom-based transfer function for pH (R2 = 0.72, \( {\text{R}}_{\text{boot}}^{2} \) = 0.54) was developed and compared with diatom assemblage turnover and sediment geochemistry in cores from eight lakes to reconstruct limnologic conditions over the past ~200 years. Most cores showed similar increases in biogenic silica and carbon burial, beginning around AD 1880 in the tundra lakes and about 1920 in the more forested catchments, likely in response to regional warming. In contrast to lakes in other Arctic regions, our lakes showed only minor pH changes in recent decades. The shift, however, was more pronounced in higher-latitude lakes with less forest cover, suggesting small-scale watershed influence on lake response to climate, even on short time scales. Diatom assemblages did not follow previously published models of climate-linked community change seen in circum-Arctic and sub-Arctic lakes. Translating local changes detected in the paleolimnological record to the regional level requires an understanding of how different catchment properties mediate the response of lakes, and their diatom assemblages, to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson SD, Böhm CO, Matile GLD (2005) GS-10 Bedrock and surficial geological field investigations in the Nejanilini Lake area, northern Manitoba (parts of NTS 64P5, 12 and 13). In: Report of Activities 2005, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp 92–103

  2. Anderson NJ, Brodersen KP, Ryves DB, McGowan S, Johansson LS, Jeppesen E, Leng MJ (2008) Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland). Ecosystems 11:307–324

    Article  Google Scholar 

  3. Antoniades D, Douglas MSV, Smol JP (2003) Comparative physical and chemical limnology of two Canadian high arctic regions: alert (Ellesmere Island, NU) and Mould Bay (Prince Patrick Island, NWT). Arch Hydrobiol 158:485–516

    Article  Google Scholar 

  4. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht, pp 171–201

    Google Scholar 

  5. Bennion H, Appleby P, Phillips G (2001) Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. J Paleolimnol 26:181–204

    Article  Google Scholar 

  6. Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267

    Article  Google Scholar 

  7. Brown LC, Duguay CR (2011) The fate of lake ice in the North American Arctic. Cryosphere 5:869–892

    Article  Google Scholar 

  8. Camburn KE, Charles DF (2000) Diatoms of low alkalinity lakes in the northeastern United States. Special Publication 18, Academy of Natural Sciences of Philadelphia. Scientific Publications, Philadelphia, pp 1–152

  9. Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Change 68:135–152

    Article  Google Scholar 

  10. Camill P, Umbanhowar CE, Geiss CE, Hobbs WO, Edlund MB, Shinneman ALC, Lynch J (2012) Holocene climate change and landscape development from a low-Arctic tundra lake in the western Hudson Bay region of Manitoba, Canada. J Paleolimnol 48:175–192

    Article  Google Scholar 

  11. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones I, Kolli RK, Kwon W, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S, Qin D,Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 849–926

  12. Conley DJ (1998) An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem 63:39–48

    Article  Google Scholar 

  13. Cuthbert I, del Giorgio P (1992) Toward a standard method of measuring color in freshwater. Limnol Oceanogr 37:1319–1326

    Article  Google Scholar 

  14. D’Arcy P, Carnigan R (1997) Influence of catchment topography on water chemistry in southeastern Quebec Shield lakes. Can J Fish Aquat Sci 54:2215–2227

    Article  Google Scholar 

  15. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248

    Google Scholar 

  16. Devlin JE, Finkelstein SA (2011) Local physiographic controls on the responses of Arctic lakes to climate warming in Sirmilik National Park, Nunavut, Canada. J Paleolimnol 45:23–39

    Article  Google Scholar 

  17. Douglas MSV, Smol JP (1999) Freshwater diatoms as indicators of environmental change in the High Arctic. In: Stoermer EF, Smol JP (eds) The diatoms: applications for earth and environmental sciences. Cambridge University Press, Cambridge, pp 227–244

    Google Scholar 

  18. Eakins JD, Morrison RT (1978) A new procedure for the determination of lead-210 in lake and marine sediments. Int J Appl Radiat Isot 29:531–536

    Article  Google Scholar 

  19. Enache MD, Paterson AM, Cumming BF (2011) Changes in diatom assemblages since pre-industrial times in 40 reference lakes from the Experimental Lakes Area (Northwestern Ontario, Canada). J Paleolimnol 46:1–15

    Article  Google Scholar 

  20. Fallu M-A, Allaire N, Pienitz R (2000) Freshwater diatoms from northern Quebec and Labrador (Canada): species–environment relationships in lakes of boreal forest, forest-tundra and tundra regions. In: Bibliotheca diatomologic, vol 45. J. Cramer, Berlin, pp 200

  21. Fallu M-A, Allaire N, Pienitz R (2002) Distribution of freshwater diatoms in 64 Labrador (Canada) lakes: species—environment relationships along latitudinal gradients and reconstruction models for water colour and alkalinity. Can J Fish Aquat Sci 59:329–349

    Article  Google Scholar 

  22. Fallu M-A, Pienitz R, Walker IR, Lavoie M (2005) Paleolimnology of a shrub-tundra lake and response of aquatic and terrestrial indicators to climatic change in arctic Québec, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 215:183–203

    Article  Google Scholar 

  23. Fritz SC, Anderson NJ (2013) The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49:349–362

    Article  Google Scholar 

  24. Fritz SC, Cumming BF, Gasse F, Laird KR (1999) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 41–72

    Google Scholar 

  25. Gorham E, Boyce F (1989) Influence of lake surface area and depth upon thermal stratification and depth of the summer thermocline. J Great Lakes Res 15:233–245

    Article  Google Scholar 

  26. Gregory-Eaves I, Smol JP, Finney BP, Edwards ME (1999) Diatom-based transfer functions for inferring past climatic and environmental changes in Alaska, U.S.A. Arct Antarct Alp Res 31:353–365

    Article  Google Scholar 

  27. Hadley KR, Douglas MSV, Lim D, Smol JP (2013) Diatom assemblagesand limnological variables from 40 lakes and ponds on Bathurst Island and neighboring high Arctic islands. Int Rev Hydrobiol 98:44–59

    Article  Google Scholar 

  28. Hill M, Gauch H (1980) Detrended correspondence analysis—an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  29. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fasite CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie C, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–298

    Article  Google Scholar 

  30. Hobbs WO, Engstrom DR, Scottler SP, Zimmer KD, Cotner JB (2013) Estimating modern carbon burial rates in lakes using a single sediment sample. Limnol Oceanogr-Methods 11:316–326

    Article  Google Scholar 

  31. Hobbs WO, Moraska Lafrancois B, Stottlemyer R, Toczydlowski D, Engstrom DR, Edlund MB, Almendinger JE, Strock KE, VanderMeulen D, Elias JE, Saros JE (2016) Nitrogen deposition to lakes in national parks of the western Great Lakes region: isotopic signatures, watershed retention, and algal shifts. Glob Biogeochem Cycles 30:514–533. doi:10.1002/2015GB005228

    Article  Google Scholar 

  32. Hoenicke R, Stapanian MA, Arent LJ, Metcalf RC (1991) Consequences of pH measurement errors. Freshw Biol 25:261–278

    Article  Google Scholar 

  33. Holmes RM, Aminot A, Kerouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. J Fish Aquat Sci 56:1801–1808

    Article  Google Scholar 

  34. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Article  Google Scholar 

  35. Juggins S (2003) C2 user guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  36. Juggins S, Anderson NJ, Hobbs JMR, Heathcote AJ (2013) Reconstrutcing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. J Paleolimnol 49:373–390

    Article  Google Scholar 

  37. Keatley BE, Douglas MSV, Smol JP (2007) Physical and chemical limnological characteristics of lakes and ponds across environmental gradients on Melville Island, Nunavut/N.W.T., High Arctic Canada. Fund Appl Limnol 168:355–376

    Article  Google Scholar 

  38. Keatley BE, Douglas MSV, Smol JP (2008a) Evaluating the influence of environmental and spatial variables on diatom species distributions from Melville Island (Canadian High Arctic). Botany 86:76–90

    Article  Google Scholar 

  39. Keatley BE, Douglas MSV, Smol JP (2008b) Prolonged ice cover dampens diatom community responses to recent climatic change in High Arctic lakes. Arc Antarct Alp Res 40:364–372

    Article  Google Scholar 

  40. Kokelj SV, Jenkins RE, Milburn D, Burn CR, Snow N (2005) The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta Region, Northwest Territories, Canada. Permafrost Periglac 16:343–353

    Article  Google Scholar 

  41. Korhola A, Weckstrom J, Nyman M (1999) Predicting the long-term acidification trends in small subarctic lakes using diatoms. J Appl Ecol 36:1021–1034

    Article  Google Scholar 

  42. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1, Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2. Gustav Fisher, Stuttgart, New York

  43. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2, Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2. Gustav Fisher, Jena

  44. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3, Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2. Gustav Fisher, Jena

  45. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4, Achnanthaceae, Kritishe Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2. Gustav Fisher, Jena

  46. Leavitt PR, Fritz SC, Anderson NJ, Baker P, Blenckner T, Bunting L, Catalan DJ, Conley DJ, Hobbs WO, Jeppesen E, Korhola A, McGowan S, Ruhland K, Rusak JA, Simpson GL, Solovieva N, Werne J (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54(6):2330–2348

  47. Liao N (2002) Determination of orthophosphate in waters by flow injection analysis colorimetry (Quickchem Method 10-115-01-1-M). Lachat Instruments, Milwaukee

    Google Scholar 

  48. Lim D, Smol JP, Douglas MSV (2007) Diatom asseblages and their relationships to lakewater nitrogen levels and other limnological variables from 36 lakes and ponds on Banks Island, N.W.T., Canadian Arctic. Hydrobiologia 586:191–211

    Article  Google Scholar 

  49. Mamet SD, Kershaw GP (2012) Subarctic and alpine tree line dynamics during the last 400 years in north-western and central Canada. J Biogeogr 39:855–868

    Article  Google Scholar 

  50. McBean G, Alekseev G, Chen D, Forland E, Fyfe J, Groisman PY, King R, Melling H, Vose R, Whitfield PH (2005) Arctic climate: past and present. In: IASC (ed) Arctic impact assessment. Cambridge University Press, New York, pp 21–60

  51. Michelutti N, Wolfe AP, Briner JP, Miller GH (2007) Climatically controlled chemical and biological development in Arctic lakes. J Geophys Res 112:GO3002

    Article  Google Scholar 

  52. Moser KA, Smol JP, MacDonald GM (2004) Ecology and distribution of diatoms from boreal lakes in Wood Buffalo National Park, northern Alberta and the Northwest Territories. Academy of Natural Sciences of Philadelphia, Philadelphia

    Google Scholar 

  53. National Atlas Information Service (1993) Canada terrestrial ecoregions. Environment Canada

  54. O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, et al. (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42:10,773–10,781

  55. Onda Y, Kato H, Tanaka Y, Tsujimura M, Davaa G, Oyunbaatar D (2007) Analysis of runoff generation and soil erosion processes by using environmental radionuclides in semiarid areas of Mongolia. J Hydrol 333:124–132

    Article  Google Scholar 

  56. Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res Earth Surf 112:1–10

    Article  Google Scholar 

  57. Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B (2003) Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–386

    Article  Google Scholar 

  58. Patrick R, Reimer CW (1966) The diatoms of the United States, exclusive of Alaska and Hawaii, volume 1—Fragilariaceae, Eunotiaceae, Achnantheceae, Naviculaceae (vol. Monograph). Academy of Natural Sciences of Philadelphia, Philadelphia

  59. Payette S, Fortin M, Gamache I (2001) The Subarctic forest—Tundra: The structure of a biome in a changing climate. Bioscience 51:709–718

    Article  Google Scholar 

  60. Pienitz R, Smol JP (1993) Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest-Territories, Canada. Hydrobiologia 269:391–404

    Article  Google Scholar 

  61. Plummer DA, Caya D, Frigon A, Côté H, Giguére M, Paquin D, Biner S, Harvey R, De Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19:3112–3132

    Article  Google Scholar 

  62. Ponader K, Pienitz R, Vincent W, Gajewski K (2002) Limnological conditions in a subarctic lake (northern Québec, Canada) during the late Holocene: analyses based on fossil diatoms. J Paleolimnol 27:353–366

    Article  Google Scholar 

  63. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365

    Article  Google Scholar 

  64. Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Le’vesque LMJ, Vincent WF (2006) Historical changes in arctic freshwater ecosystems. Ambio 35:339–346

    Article  Google Scholar 

  65. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  66. Rasmussen JB, Godbout L, Schallenberg M (1989) The humic acid content of lake water and its relationship to watershed and lake morphometry. Limnol Oceanogr 34:1336–1343

    Article  Google Scholar 

  67. Reavie ED, Kireta AR, Kingston JC, Sgro GV, Danz NP, Axler RP, Hollenhorst TP (2008) Comparison of simple and multimetric diatom-based indices for Great Lakes coastline disturbance. J Phycol 44:787–802

    Article  Google Scholar 

  68. Renberg I (1990) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90

    Article  Google Scholar 

  69. Rühland KM, Smol JP (1998) Limnological characteristics of 70 lakes spanning Arctic treeline from Coronation Gulf to Great Slave Lake in the Centeral Northwest Territories, Canada. Int Rev Hydrobiol 83:183–203

    Article  Google Scholar 

  70. Rühland KM, Smol JP, Pienitz R (2003a) Ecology and spatial distributions of surface-sediment diatoms from 77 lakes in the subarctic Canadian treeline region. Can J Bot 81:57–73

    Article  Google Scholar 

  71. Rühland KM, Smol JP, Wang X, Muir DCG (2003b) Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region. J Limnol 62:9–27

    Article  Google Scholar 

  72. Rühland KM, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754

    Google Scholar 

  73. Rühland KM, Paterson AM, Smol JP (2015) Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–35

    Article  Google Scholar 

  74. Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev 90:522–541

    Article  Google Scholar 

  75. Sechtig A (2001) Determination of nitrate in 2M KCl soil extracts by flow injection analysis (Quickchem Method 12-107-04-1-B)

  76. Smol JP (1983) Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can J Bot 61:2195–2204

    Article  Google Scholar 

  77. Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Des Int Ver Limnol 23:837–844

    Google Scholar 

  78. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Ruhland KM, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley B, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  79. Tank SE, Frey KE, Striegl RG, Raymond PA, Holmes RM, McClelland JW, Peterson BJ (2012) Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob Biogeochem Cycles 26:GB0E02. doi:10.1029/2012GB004299

    Google Scholar 

  80. Tape K, Sturm M, Racine CH (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702

    Article  Google Scholar 

  81. Timoney KP, Laroi GH, Zoltai SC, Robinson AL (1993) Vegetation communities and plant-distributions and their relationships with parent materials in the forest-tundra of Northwestern Canada. Ecography 16:174–188

    Article  Google Scholar 

  82. Umbanhowar CE, Camill P, Geiss CA, Teed R (2006) Asymmetric vegetation responses to mid-Holocene aridity at the prairie-forest ecotone in south-central Minnesota. Quat Res 66:53–66

    Article  Google Scholar 

  83. Umbanhowar CE, Camill P, Edlund MB, Geiss CE, Durham W, Kreger K, Molano W, Raskob C, Stocker M, Tvera A, Williams J (2013) Contrasting changes in surface waters and barrens over the past 60 years for a subarctic forest-tundra site in northern Manitoba based on remote sensing imagery. Can J Earth Sci 50:967–977

    Article  Google Scholar 

  84. Umbanhowar CE, Camill P, Edlund MB, Geiss C, Henneghan P, Passow K (2014) Lake–landscape connections at the forest–tundra transition of northern Manitoba. Inland Waters 5:57–74

    Article  Google Scholar 

  85. Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canario J, Cory RM, Deshpande BN, Helbig M, Jammet M, Karlsson J, Larouche J, MacMillan G, Rautio M, Anthony KMW, Wickland KP (2015) Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–7167

    Article  Google Scholar 

  86. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harteh MS, Calef MP, Callaghan TV, Carroll AB, Esptein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turneru PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community response to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346

    Article  Google Scholar 

  87. Weckstrom J, Korhola A, BlomT (1997) Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiol 347:171–184

  88. Westover KS, Moser KA, Porinchu DF, MacDonald GM, Wang X (2009) Physical and chemical limnology of a 61-lake transect across mainland Nunavut and southeastern Victoria Island, Central Canadian Arctic. Fund Appl Limnol 175:93–112

    Article  Google Scholar 

  89. Zhang T, Osterkamp T, Stamnes K (1997) Effects of climate on the active layer and permafrost on the North Slope of Alaska, U.S.A. Permafr Periglac 8:45–67

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to pilots Mark Leyden and Jason Essaunce, and the staff at the Lodge at Little Duck for assistance in the field. Students Allie Dupont, Mark Krueger, Eric Emmons, Patrick Henneghan, Madison Kubis, Kendra Passow, Megan Parker provided assistance in the field and/or laboratory. Thanks also to Manitoba Conservation for help with permits. Dan Engstrom, Erin Mortenson, and Jill Coleman Wasik (St. Croix Watershed Research Station) provided core dating and geochemistry. The staff and facilities at LacCore are gratefully acknowledged for assistance with core processing and archiving. This study was supported by National Science Foundation Grants DEB-0743364, DEB-0743413, DEB-0743438, DEB-0743236, DEB-0904050, and DBI-1005817. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Avery L. C. Shinneman.

Appendix

Appendix

Relative abundance of the most common diatom species in all lakes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shinneman, A.L.C., Umbanhowar, C.E., Edlund, M.B. et al. Diatom assemblages reveal regional-scale differences in lake responses to recent climate change at the boreal-tundra ecotone, Manitoba, Canada. J Paleolimnol 56, 275–298 (2016). https://doi.org/10.1007/s10933-016-9911-5

Download citation

Keywords

  • Diatoms
  • pH transfer function
  • Sub-Arctic
  • Ecotone
  • Manitoba
  • Climate change