Skip to main content

Climate-driven changes in lakes from the Peruvian Andes

Abstract

The consequences of recent warming in the Andes have been dramatic, most iconically visualized by the rapid retreat of tropical mountain glaciers. Of all the ecosystems in the tropical Andes, lakes have received amongst the least research attention. We examined subfossil diatom and chrysophyte assemblages to chronicle recent (past ~150 years) ecological change in lakes from the Peruvian Andes. We recorded abrupt increases in planktonic diatoms and scaled chrysophytes beginning in the early 1900s. These changes are consistent with enhanced periods of thermal stratification, brought on by rising temperatures that have been documented throughout the Andes. These data indicate that ecological and likely physical limnological changes associated with Anthropocene warming are already under way in tropical high mountain lakes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilera X, Lazzaro X, Coronel JS (2013) Tropical high-altitude lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Photochem Photobiol Sci 12:1649–1657

    Article  Google Scholar 

  2. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Terrestrial, algal, and siliceous indicators. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Kluwer, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  3. Bird BW, Abbot MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci 108:8583–8588

    Article  Google Scholar 

  4. Catalan J, Pla S, Rieradevall M, Felip M, Ventura M, Buchaca T, Camarero L, Brancelj A, Appleby PG, Lami A, Grytnes JA, Agustí-Panareda Thompson R (2002) Lake Redó ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J Paleolimnol 28:129–145

    Article  Google Scholar 

  5. Catalan J, Barbieri MG, Bartumeus F, Bituší P, Botev I, Brancelj A, Cogalniceanu D, Manca M, Marchetto A, Ognjanova-Rumenova N, Pla S, Rieradevall M, Sorvari S, Štefková E, Stuchlík E, Ventura M (2009) Ecological thresholds in European alpine lakes. Freshw Biol 54:2494–2517

  6. Cooke CA, Balcomb PH, Biester H, Wolfe AP (2009) Over three millennia of mercury pollution in the Peruvian Andes. Proc Natl Acad Sci 106:8830–8834

    Article  Google Scholar 

  7. Cremer H, Wagner B (2004) Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Can J Bot 82:1744–1757

    Article  Google Scholar 

  8. Cremer H, Wagner B, Melles M, Hubberten H-W (2001) The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87

    Article  Google Scholar 

  9. Cross SL, Baker PA, Seltzer GO, Fritz SC, Dunbar RB (2000) A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 10:21–32

    Article  Google Scholar 

  10. Ekdahl E, Fritz SC, Baker PA, Rigsby CA, Coley K (2008) Holocene multi-decadal to millennial-scale hydrologic variability on the South American Altiplano. Holocene 18:867–876

    Article  Google Scholar 

  11. Ginn BK, Rate M, Cumming BF, Smol JP (2010) Ecological distribution of scaled-chrysophyte assemblages from the sediments of 54 lakes in Nova Scotia and southern New Brunswick, Canada. J Paleolimnol 43:293–308

    Article  Google Scholar 

  12. Gunkel G (2000) Limnology of an equatorial high mountain lake in Ecuador, Lago San Pablo. Limnologica 30:113–120

    Article  Google Scholar 

  13. Gunkel G, Casalla J (2002) Limnology of an equatorial high mountain lake: Lago San Pablo, Ecuador: the significance of deep diurnal mixing for lake productivity. Limnologica 32:33–43

    Article  Google Scholar 

  14. Hadley KR, Paterson AM, Hall RI, Smol JP (2013) Effects of multiple stressors on lakes in south-central Ontario: 15 years of change in lakewater chemistry and sedimentary diatom assemblages. Aquat Sci 75:349–360

    Article  Google Scholar 

  15. Haig HA, Kingsbury MV, Laird KR, Leavitt PR, Laing R, Cumming BF (2013) Assessment of drought over the past two millennia using near-shore sediment cores from a Canadian boreal lake. J Paleolimnol 50:175–190

    Article  Google Scholar 

  16. Hallstan S, Trigal C, Johansson KSL, Johnson RK (2013) The impact of climate on the geographical distribution of phytoplankton species in boreal lakes. Oecologia 173:1625–1638. doi:10.1007/s00442-013-2708-6

    Article  Google Scholar 

  17. Haylock MR, Peterson TC, Alves TM, Ambrizzi T, Anunciação Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512

    Article  Google Scholar 

  18. Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) (2011) Climate change and biodiversity in the tropical andes. Scientific Committee on Problems of the Environment (SCOPE). ISBN: 978-85-99875-05-6

  19. Hillyer R, Valencia B, Bush MB, Silman MR, Steinitz-Kannan M (2009) A 24,700 year paleolimnological history from the Peruvian Andes. Quat Res 71:71–82

    Article  Google Scholar 

  20. Hobaek A, Løvik JE, Rohrlack T, Moe SJ, Grung M, Bennion H, Clarke G, Piliposyan GT (2012) Eutrophication, recovery and temperature in Lake Mjøsa: detecting trends with monitoring data and sediment records. Freshw Biol 57:1998–2014

    Article  Google Scholar 

  21. Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot E, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS ONE 5:e10026. doi:10.1371/journal.pone.0010026

    Article  Google Scholar 

  22. Hutchinson GE, Löffler H (1956) The thermal classification of lakes. In: Löffler H (ed) The limnology of tropical high-mountain lakes. Verh Internat Verein Limnol 15:176–193

  23. Kelly MG, Bennion H, Cox EJ, Goldsmith B, Jamieson J, Juggins S, Mann DG, Telford RJ (2005) Common freshwater diatoms of Britain and Ireland: an interactive key. Environ Agency, Bristol

    Google Scholar 

  24. Kittel T, Richerson PJ (1978) The heat budget of a large tropical lake, Lake Titicaca (Peru–Bolivia). Verh Internat Verein Limnol 20:1203–1209

    Google Scholar 

  25. Löffler H (1964) The limnology of tropical high-mountain lakes. Verh Int Verein Limnol 15:176–193

    Google Scholar 

  26. Maldonado M, Maldonado-Ocamp JA, Ortega H, Encalada AC, Carvajal-Vallejos FM, Rivadeneira JF, Acosta F, Jacobsen D, Crespo A, Rivera-Rondón CA (2011) Biodiversity in aquatic systems of the tropical Andes. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical andes, Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), pp 277–294. ISBN: 978-85-99875-05-6

  27. Michelutti N, Wolfe AP, Cooke CA, Hobbs WO, Vuille M, Smol JP (2015) Climate change forces new ecological states in tropical Andean lakes. PLoS ONE. doi:10.1371/journal.pone.0115338

    Google Scholar 

  28. Paterson AM, Cumming BF, Smol JP, Hall RI (2001) Scaled chrysophytes as indicators of water quality changes since pre-industrial times in the Muskoka-Haliburton region, Ontario, Canada. Can J Fish Aquat Sci 58:2468–2481

    Google Scholar 

  29. Paterson AM, Cumming B, Smol JP, Hall RI (2004) Marked recent increases of colonial scaled chrysophytes in boreal lakes: implications for the management of taste and odour events. Freshw Biol 49:199–207

    Article  Google Scholar 

  30. Pienitz R, Smol JP, Birks HJB (1995) Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J Paleolimnol 13:21–49

    Article  Google Scholar 

  31. Rabatel A, Francou B, Soruco A, Gomez J, Caceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Article  Google Scholar 

  32. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2745

    Google Scholar 

  33. Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887. doi:10.1098/rspb.2013.1887

    Article  Google Scholar 

  34. Rühland KM, Paterson AM, Smol JP (2015) Diatom assemblage responses to warming: reviewing the evidence. J Paleolimnol. doi:10.1007/s10933-015-9837-3

  35. Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev 90:522–541. doi:10.1111/brv.12120

    Article  Google Scholar 

  36. Smol JP (1985) The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123:199–208

    Article  Google Scholar 

  37. Smol JP (1995) Application of chrysophytes to problems in paleoecology. In: Sandgren C, Smol JP, Kristianse J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 302–329

    Google Scholar 

  38. Smol JP, Douglas MSV (2007a) From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  39. Smol JP, Douglas MSV (2007b) Crossing the final ecological threshold in high Arctic ponds. Proc Nat Acad Sci 104:12395–12397

    Article  Google Scholar 

  40. Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. http://westerndiatoms.colorado.edu. Accessed 17 June 2014

  41. Stansell ND, Rodbell DT, Abbott MB, Mark BG (2013) Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quat Sci Rev 70:1–14

    Article  Google Scholar 

  42. Steinitz-Kannan M (1997) The lakes in Andean protected areas of Ecuador. George Wright Forum 14:33–43

    Google Scholar 

  43. Thibeault JM, Seth A, Garcia M (2010) Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res 115:D08103

    Google Scholar 

  44. Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat M, Mikhalenko VN, Lin PN (2013) Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340:945–950. doi:10.1126/science.1234210

    Article  Google Scholar 

  45. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108

    Google Scholar 

  46. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99

    Article  Google Scholar 

  47. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

  48. Weckström J, Korhola A, Blom T (1997) Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347:171–184

    Article  Google Scholar 

  49. Williamson CE, Saros JE, Vincent W, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by NSERC Discovery Awards awarded to JPS and Alexander P Wolfe (Univ Alberta), and a NGS grant to CAC. We thank Mathias Vuille for providing us with the climate data. Pedro Tapia, Alejandro Chu, Alberto Reyes assisted with field work. Helpful comments were provided by Sheri Fritz and two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neal Michelutti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michelutti, N., Cooke, C.A., Hobbs, W.O. et al. Climate-driven changes in lakes from the Peruvian Andes. J Paleolimnol 54, 153–160 (2015). https://doi.org/10.1007/s10933-015-9843-5

Download citation

Keywords

  • Peruvian Andes
  • Paleolimnology
  • Diatoms
  • Chrysophyte scales
  • Climate change