Advertisement

Journal of Paleolimnology

, Volume 53, Issue 1, pp 73–88 | Cite as

The use of changes in small coastal Atlantic brooks in southwestern Europe as indicators of anthropogenic and climatic impacts over the last 400 years

  • Arturo Sousa
  • Leoncio García-Barrón
  • Pablo García-Murillo
  • Mark Vetter
  • Julia Morales
Original paper

Abstract

Unlike other aquatic continental ecosystems such as lakes, small coastal brooks have not been used as indicators of anthropogenic or climatic impacts. Our study addresses reconstructing the evolution of coastal brooks in the southwest of Spain from the early seventeenth century to the end of the twentieth century using fieldwork, remote sensing, historical sources and microrelief. These brooks have had a continuous regression, losing 84.7 % of their length since 1630 AD. From the seventeenth century to the beginning of the twentieth century, climatic factors were responsible for the filling and siltation of the thalweg of brooks with sandy sediments of eolian origin. The alternation of dry and humid periods during the Little Ice Age in southern Spain favoured the mobilisation of sandy sediments in a process of secondary dunification, which was initiated during the eighteenth century and prominent at the end of the Little Ice Age. This process has coincided with a loss of water availability or an increase of aridity in some lakes and lagoons of southwestern Europe at the end of the nineteenth century. However, during the second half of the twentieth century, the average annual rate of thalweg regression almost quadrupled to 432.2 m year−1 mainly due to anthropogenic impacts associated with logging. These changes coincide with the mobilisation of sandy sediment and the erosion of coastal brooks in southwestern Portugal and other continental aquatic ecosystems in southwestern Spain. Therefore, we believe that changes in small coastal brooks can be used as indicators of anthropogenic and climatic impacts and, in the future, as sentinels to study the effects of climatic change just as lakes, reservoirs and rivers are considered.

Keywords

Brook Late Holocene Paleohydrology Little Ice Age Human impact SW Europe 

Notes

Acknowledgments

The authors are grateful to the Doñana Natural Park management for providing access to the study area, to Carola Pérez-Porras for helping with fieldwork and to the Andalusian Institute of Cartography. This study was funded by the Spanish Ministry of Economy and Competitiveness Project CGL2009-10683 and also by the Project 158-2010. Finally, we thank the anonymous reviewers their comments to improve our manuscript.

Supplementary material

10933_2014_9809_MOESM1_ESM.doc (857 kb)
Supplementary material 1 (DOC 857 kb)

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297CrossRefGoogle Scholar
  2. Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–98CrossRefGoogle Scholar
  3. Álvarez-Rogel J, Jiménez-Cárceles FJ, Roca MJ, Ortiz R (2007) Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci 73:510–526CrossRefGoogle Scholar
  4. Arnoldus HMJ (1980) An approximation of the rainfall factor in the USLE. In: DeBoodt M, Gabriels D (eds) Assessment of erosion. Wiley, Chichester, pp 127–132Google Scholar
  5. Barriendos M, Rodrigo FS (2006) Study of historical flood events on Spanish rivers using documentary data. Hydrol Sci J 51:765–783CrossRefGoogle Scholar
  6. Bohn VY, Perillo GME, Piccolo MC (2011) Distribution and morphometry of shallow lakes in a temperate zone (Buenos Aires Province, Argentina). Limnetica 30:89–102Google Scholar
  7. Brázdil R, Kundzewicz ZW (2006) Historical hydrology-editorial. Hydrol Sci J 51:733–738CrossRefGoogle Scholar
  8. Bromberg KD, Bertness MD (2005) Reconstructing New England salt marsh losses using historical maps. Estuar Coasts 28:823–832CrossRefGoogle Scholar
  9. Castro-Díez Y, Esteban-Parra MJ, Staudt M, Gámiz-Fortis S (2007) Temperature and precipitation changes in Andalusia in the Iberian Peninsula and Northern Hemisphere context. In: Sousa A, García-Barrón L, Jurado V (eds) Climate change in andalusia: trends and environmental consequences. Consejería de Medio Ambiente, Seville, pp 57–77Google Scholar
  10. Corella JP, El Amrani A, Sigró J, Morellón M, Rico E, Valero-Garcés BL (2011) Recent evolution of Lake Arreo, northern Spain: influences of land use change and climate. J Paleolimnol 46:469–485CrossRefGoogle Scholar
  11. Corella JP, Stefanova V, El Anjoumi A, Rico E, Giralt S, Moreno A, Plata-Montero A, Valero-Garcés BL (2013) A 2,500-year multi-proxy reconstruction of climate change and human activities in northern Spain: the Lake Arreo record. Palaeogeogr Palaeoclimatol Palaeoecol 386:555–568CrossRefGoogle Scholar
  12. Costas S, Jerez S, Trigo RM, Goble R, Rebelo L (2012) Sand invasion along the Portuguese coast forced by westerly shifts during cold climate events. Quat Sci Rev 42:15–28CrossRefGoogle Scholar
  13. Custodio E, Manzano M, Montes C (2009) Las aguas subterráneas en Doñana: aspectos ecológicos y sociales. Agencia Andaluza del Agua, SevilleGoogle Scholar
  14. Czymzik M, Dulski P, Plessen B, von Grafenstein U, Naumann R, Brauer A (2010) A 450 year record of spring-summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water Resour Res 46:W11528. doi: 10.1029/2009WR008360 CrossRefGoogle Scholar
  15. De La Lama G (1951) Diez años de trabajos forestales. Rev Montes 39:195–201Google Scholar
  16. Devereux CM (1982) Climatic speeds erosion of the Algarve’s Valleys. Geogr Mag 54:10–17Google Scholar
  17. Espina J, Estévez A (1993) El espacio de repoblación forestal de Cabezudos-Abalario. In: Granados M, Ojeda JF (eds) Intervenciones Públicas en el Litoral Atlántico andaluz. Efectos territoriales. Agencia de Medio Ambiente, Seville, pp 95–107Google Scholar
  18. Fournier F (1960) Climat et érosion. Presses Universitaires de France, ParísGoogle Scholar
  19. García-Barrón L, Aguilar M, Sousa A (2011) Evolution of annual rainfall irregularity in the southwest of the Iberian Peninsula. Theor Appl Climatol 103:13–26CrossRefGoogle Scholar
  20. García-Murillo P, Sousa A (1999) El paisaje vegetal de la zona oeste del Parque Natural de Doñana (Huelva). Lagascalia 21:111–132Google Scholar
  21. García-Murillo P, Sousa A, Fuertes E (1995) Sphagnum inundatum Russ., nuevo para Andalucía. An Jardin Bot Madr 53:245Google Scholar
  22. García-Novo F, Martín A, Toja J (2007) La frontera de Doñana. University of Seville, SevilleGoogle Scholar
  23. Gavala J (1936) Mapa Geológico de España Escala 1:50,000 y memoria explicativa Sheet 1017 (El Asperillo). Instituto Geológico y Minero de España, CoullantGoogle Scholar
  24. Gimmi U, Lachat T, Bürgi M (2011) Reconstructing the collapse of wetland networks in the Swiss lowlands 1850–2000. Landsc Ecol 26:1071–1083CrossRefGoogle Scholar
  25. Glaser R, Riemann D, Schönbein J, Barriendos M, Brázdil R, Bertolin C, Camuffo D, Deutsch M, Dobrovolný P, van Engelen A, Enzi S, Halíčková M, Koenig SJ, Kotyza O, Limanówka D, Macková J, Sghedoni M, Martin B, Himmelsbach I (2010) The variability of European floods since AD 1500. Clim Change 101:235–256CrossRefGoogle Scholar
  26. Gonzalo y Tarín J (1886) Descripción física, geológica y minera de la provincia de Huelva. Imprenta Manuel Tello, MadridGoogle Scholar
  27. Granados M, Martín A, García-Novo F (1988) Long-term vegetation changes on the stabilized dunes of Doñana National Park (SW Spain). Plant Ecol 75:73–80CrossRefGoogle Scholar
  28. Gregori E, Andrenelli MC, Zorn G (2006) Assessment and classification of climatic aggressiveness with regard to slope instability phenomena connected to hydrological and morphological processes. J Hydrol 329:489–499CrossRefGoogle Scholar
  29. Grove AT (2001) ‘The “Little Ice Age” and its geomorphological consequences in Mediterranean Europe. Clim Change 48:121–136CrossRefGoogle Scholar
  30. Heimo M, Siemens AH, Hebda R (2004) Prehispanic changes in wetland topography and their implications to past and future wetland agriculture at Laguna Mandinga, Veracruz, Mexico. Agric Hum Values 21:313–327CrossRefGoogle Scholar
  31. Hickin EJ (1984) Vegetation and river channel dynamics. Can Geogr 28:111–126CrossRefGoogle Scholar
  32. Ibáñez C, Caoia N (2013) Impacts of water scarcity and drought on Iberian aquatic ecosystems. In: Schwabe K, Albiac J, Connor JD, Hassan RM, González LM (eds) Drought in arid and semi-arid regions. A multi-disciplinary and cross-country perspective. Springer, Netherlands, pp 169–184CrossRefGoogle Scholar
  33. Kith M (1936) Propuesta de ampliación del proyecto de fijación y repoblación de las Dunas de Almonte. Unedited Technical Report V División Hidrológico-Forestal del Guadalquivir, HuelvaGoogle Scholar
  34. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. W.H. Freeman, San FranciscoGoogle Scholar
  35. López-Blanco C, Gaillard MJ, Miracle MR, Vicente E (2011) Lake-level changes and fire history at Lagunillo del Tejo (Spain) during the last millennium: climate or humans? Holocene 22:551–560CrossRefGoogle Scholar
  36. Macdonald N (2012) Trends in flood seasonality of the River Ouse (Northern England) from archive and instrumental sources since AD 1600. Clim Change 110:901–923CrossRefGoogle Scholar
  37. Manzano M, Custodio E (2005) El Acuífero de Doñana y su relación con el medio natural. In: García-Novo F, Marin C (eds) Doñana, Agua y Biosfera. Confederación hidrográfica del Guadalquivir, Ministerio Medio Ambiente, Madrid, pp 133–142Google Scholar
  38. Martín-Puertas C, Valero-Garcés BL, Mata MP, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. Holocene 18:907–921CrossRefGoogle Scholar
  39. Merino J, Martín A, Granados M, Merino O (1990) Desertification of coastal sands of south-west Spain. Agric Ecosyst Environ 33:171–180CrossRefGoogle Scholar
  40. Mora L (1981) Torres de almenara de la costa de Huelva. Diputación Provincial de Huelva, HuelvaGoogle Scholar
  41. Morellón M, Valero-Garcés B, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero O, Engstrom DR, López-Vicente M, Navas A, Soto J (2011) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol 46:423–452CrossRefGoogle Scholar
  42. Morellón M, Pérez-Sanz A, Corella JP, Büntgen U, Catalán J, González-Sampériz P, González-Trueba JJ, López-Sáez JA, Moreno A, Pla-Rabes S, Saz-Sánchez MA, Scussolini P, Serrano E, Steinhilber F, Stefanova V, Vegas-Vilarrúbia T, Valero-Garcés B (2012) A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees. Clim Past 8:683–700CrossRefGoogle Scholar
  43. Muñoz-Reinoso JC (2001) Vegetation changes and groundwater abstraction in SW Doñana, Spain. J Hydrol 242:197–209CrossRefGoogle Scholar
  44. Ojeda J, Vallejo I, Malvarez GC (2005) Morphometric evolution of the active dunes system of the Doñana National Park, Southern Spain (1977–1999). J Coastal Res 49:40–45Google Scholar
  45. Parmesan C, Duarte C, Poloczanska E, Richarsson AJ, Singer MC (2011) Overstretching attribution. Nat Clim Chang 1:2–4CrossRefGoogle Scholar
  46. Patrimonio Forestal del Estado (1941) Reconocimiento y propuestas de trabajos en la finca del Coto Ibarra. Unedited technical Report, Huelva, SpainGoogle Scholar
  47. Petit CC, Lambin EF (2002) Impact of data integration technique on historical land-use/land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc Ecol 17:117–132CrossRefGoogle Scholar
  48. Pfister C, Brázdil R, Glaser R, Barriendos M, Camuffo D, Deutsch M, Rodrigo FS (1999) Documentary evidence on climate in sixteenth-century Europe. Clim Change 43:55–110CrossRefGoogle Scholar
  49. Prieto MR, Rojas F (2012) Documentary evidence for changing climatic and anthropogenic influences on the Bermejo Wetland in Mendoza, Argentina, during the 16th–20th century. Clim Past 8:951–961CrossRefGoogle Scholar
  50. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (1999) A 500-year precipitation record in southern Spain. Int J Climatol 19:1233–1253CrossRefGoogle Scholar
  51. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (2000) Rainfall variability in Southern Spain on decadal to centennial times scales. Int J Climatol 20:721–732CrossRefGoogle Scholar
  52. Rodrigo FS, Gómez-Navarro JJ, Montávez Gómez JP (2012) Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations. Clim Past 8:117–133CrossRefGoogle Scholar
  53. Romero-Viana L, Miracle MR, López-Blanco C, Cuna E, Vilaclara G, Garcia-Orellana J, Keely BJ, Camacho A, Vicente E (2009) Sedimentary multiproxy response to hydroclimatic variability in Lagunillo del Tejo (Spain). In: Buczkó K, Korponai J, Padisák J, Starratt SW (eds) Palaeolimnological proxies as tools of environmental reconstruction in fresh water. Springer, Netherlands, pp 231–245CrossRefGoogle Scholar
  54. Serrano L, Esquivias-Segura MP, Zunzunegui M (2008) Long-term hydrological changes over a seventeen-year period in temporary ponds of the Doñana N. P. (SW Spain). Limnetica 2:65–77Google Scholar
  55. Sousa A, García-Murillo P (2003) Changes in the wetlands of Andalusia (Doñana Natural Park, SW Spain) at the end of the Little Ice Age. Clim Change 58:193–217CrossRefGoogle Scholar
  56. Sousa A, García-Murillo P, Morales J, García-Barrón L (2009a) Anthropogenic and natural effects on the coastal lagoons in the southwest of Spain (Doñana National Park). ICES J Mar Sci 66:1508–1514CrossRefGoogle Scholar
  57. Sousa A, Andrade F, Félix A, Jurado V, León-Botubol A, García-Murillo P, García-Barrón L, Morales J (2009b) Historical importance of wetlands in malaria transmission in southwest of Spain. Limnetica 28:283–300Google Scholar
  58. Sousa A, García-Murillo P, Sahin S, Morales J, García-Barrón L (2010) Wetland place names as indicators of manifestations of recent climate change in SW Spain (Doñana Natural Park). Clim Change 100:525–557CrossRefGoogle Scholar
  59. Sousa A, Morales J, García-Barrón L, García-Murillo P (2013) Changes in the Erica ciliaris Loefl. ex L. peat bogs of southwestern Europe from the 17th to the 20th centuries AD. Holocene 23:255–269CrossRefGoogle Scholar
  60. Trick T, Custodio E (2004) Hydrodynamic characteristics of the western Doñana Region (area of El Abalario), Huelva, Spain. Hydrogeol J 12:321–335CrossRefGoogle Scholar
  61. Valdemoro HI, Sánchez-Arcilla A, Jiménez JA (2007) Coastal dynamics and wetlands stability. The Ebro delta case. Hydrobiologia 577:17–29CrossRefGoogle Scholar
  62. Valero-Garcés BL, Moreno A (2011) Iberian lacustrine sediment records: responses to past and recent global changes in the Mediterranean region. J Paleolimnol 46:319–325CrossRefGoogle Scholar
  63. Valero-Garcés BL, Moreno A, Navas A, Mata P, Machín J, Delgado-Huertas A, González-Sampériz P, Schwalb A, Morellón M, Cheng H, Edwards RL (2008) The Taravilla lake and tufa deposits (Central Iberian Range, Spain) as palaeohydrological and palaeoclimatic indicators. Palaeogeogr Palaeoclimatol Palaeoecol 259:136–156CrossRefGoogle Scholar
  64. Vetter M, Sousa A (2012) Past and current trophic development in Lake Ammersee–Alterations in a normal range or possible signals of climate change? Fund Appl Limnol 180:41–57Google Scholar
  65. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254CrossRefGoogle Scholar
  66. Williamson CE, Saros JE, Vincent WF, Smold JP (2009a) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282CrossRefGoogle Scholar
  67. Williamson CE, Saros JE, Schindler DW (2009b) Sentinels of change. Science 323:887–888CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Arturo Sousa
    • 1
  • Leoncio García-Barrón
    • 2
  • Pablo García-Murillo
    • 1
  • Mark Vetter
    • 3
  • Julia Morales
    • 1
  1. 1.Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevilleSpain
  2. 2.Departamento de Física Aplicada IIUniversidad de SevillaSevilleSpain
  3. 3.Faculty of Informationmanagement and MediaKarlsruhe University of Applied SciencesKarlsruheGermany

Personalised recommendations