Journal of Paleolimnology

, Volume 51, Issue 1, pp 1–14 | Cite as

Environmental impacts of Little Ice Age cooling in central Mexico recorded in the sediments of a tropical alpine lake

  • E. Cuna
  • E. Zawisza
  • M. Caballero
  • A. C. Ruiz-Fernández
  • S. Lozano-García
  • J. Alcocer
Original paper


The Little Ice Age (LIA), AD 1350–1850, represents one of the most recent, persistent global climate oscillations. In Mexico, it has been associated with temperature decreases of 1.5–2 °C and mountain glacier advances, which are not accurately dated. We present new information about the nature of the LIA in central Mexico based on a decadal-resolution sediment sequence from high-altitude, tropical Lake La Luna, in the Nevado de Toluca volcano. We inferred past climatic and environmental changes using magnetic susceptibility, charcoal particles, palynomorphs, diatoms, cladoceran remains and multivariate statistics. The onset of the LIA corresponds with the beginning of a long-term trend to colder and drier climate ca. AD 1360–1910. The coolest and driest episode, ~AD 1660–1760, which corresponds with the Maunder Minimum in solar activity, was characterized by a cladoceran assemblage that showed the greatest dissimilarity to the modern one (no modern analogue), with the presence of cold-water species and Daphnia ephippia. The beginning of a warming trend ca. AD 1760, was identified by a diatom assemblage dominated by species with affinities for higher pH values (>6) and the greatest dissimilarity to the modern assemblage. This less cold, but still dry period, corresponds with historical reports of cattle and crop losses that predated the Mexican wars of Independence (AD 1810–1821) and Revolution (1910–1924). Modern conditions, established around AD 1910, resemble those during the Medieval Climate Anomaly (ca. AD 1200). No clear evidence of modern, human-induced environmental change was recorded, indicating that Lake La Luna is an ideal site in Mexico to monitor future impacts of global change.


LIA Central Mexico Tropical alpine lake Diatoms Cladocerans 



This work had partial financial support from Consejo Nacional de Ciencia y Tecnología (INFR-2013-01/204818) and from the Universidad Nacional Autónoma de México: DGAPA-PAPIIT—IN105009 and Programa de Investigación en Cambio Climático (PINCC), UNAM, “Los lagos del Nevado de Toluca, México: centinelas para la detección y análisis del cambio global”. The Comisión Estatal de Parques Naturales y de la Fauna (CEPANAF, Secretaría de Ecología, Gobierno del Estado de México) provided the permit for scientific research at the Parque Nacional Nevado de Toluca. The authors acknowledge Luis M. Mandujano, Director of the National Park Nevado de Toluca, for the facilities provided and Alejandro Rodríguez, for his assistance during field work. EC gratefully acknowledges the support from the Postgraduate Program in Biological Sciences of the Universidad Nacional Autónoma de México (UNAM) and the economic support from CONACyT for her PhD research.


  1. Alcocer J, Oseguera LA, Escobar E, Peralta L, Lugo A (2004) Phytoplankton biomass and water chemistry in two high mountains, tropical lakes in central Mexico. Arct Antarct Alp Res 36:342–346CrossRefGoogle Scholar
  2. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570Google Scholar
  3. Battarbee RW (2000) Paleolimnological approaches to climate change, with special regard to the biological record. Quatern Sci Rev 19:107–124CrossRefGoogle Scholar
  4. Battarbee RW, Simpson HB, Curtis C (2011) A reference typology of low alkalinity lakes in the UK based on pre-acidification diatom assemblages from lake sediment cores. J Paleolimnol 45:489–505CrossRefGoogle Scholar
  5. Bennike O, Sarmaja-Korjonen K, Seppanen A (2004) Reinvestigation of the classic late-glacial Bølling Sø sequence, Denmark: chronology, macrofossils, cladocera and chydorid ephippia. J Quatern Sci 19:465–478CrossRefGoogle Scholar
  6. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  7. Caballero ME (1996) The diatom flora of two acid lakes in central Mexico. Diatom Res 11:227–240CrossRefGoogle Scholar
  8. Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotters AF, Barbieri A, Stuchlik E, Lien L, Bitusik P, Buchaca T, Camarero L, Goudsmit GH, Kopáćek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Šiŝko M, Sorvari S, Šporka F, Strunecky O, Toro M (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46CrossRefGoogle Scholar
  9. Cervantes-Martinez A, Gutierrez-Aguirre M, Elias-Gutierrez M (2000) Description of Iliocryptus nevadensis (Branchiopoda, Anomopoda), a new species from high altitude rater lake in the volcano Nevado de toluca, Mexico. Crustaceana 354:311–321CrossRefGoogle Scholar
  10. Clark JS (1988) Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80CrossRefGoogle Scholar
  11. Contreras-Servin C (2005) Las sequías en México durante el siglo XIX. Investig Geog 56:118–133Google Scholar
  12. Correa-Metrio A, Urrego DH, Cabrera KR, Bush MB (2012) paleoMAS: paleoecological analysis. p. The R project for statistical computingGoogle Scholar
  13. Crowley TJ, Lowery TS (2000) How warm was the medieval warm period? Ambio 29:51–54Google Scholar
  14. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. PAGES News 16:22–23Google Scholar
  15. Elías-Gutiérrez M, Suarez-Morales E, Gutiérrez-Aguirre MA, Silva-Briano M, Granados-Ramírez JG, Garfias-Espejo T (2008) Cladocera y copepoda de las aguas continentales de México: Guía ilustrada. UNAM, ECOSUR, SEMARNAT_CONACYT, CONABIO, MéxicoGoogle Scholar
  16. Endfield GH, O′Hara SL (1997) Conflicts overs waters in “The Little Drought Age” in Central México. Environ Hist 3:255–272CrossRefGoogle Scholar
  17. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, New YorkGoogle Scholar
  18. Falasco E, Bona F, Badino G, Hoffmann L, Ector L (2009) Diatom teratological forms and environmental alterations a review. Hidrobiologia 623:1–35CrossRefGoogle Scholar
  19. Florescano E (1980) Análisis histórico de las sequías en México. Secretaria de Agricultura y Recursos Hidráulicos, MéxicoGoogle Scholar
  20. Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 667–692Google Scholar
  21. Grimm E (2004) Tilia and TGView 2.0.2 Illinois State Museum. Research and Collection Center, Springfield, IllinoisGoogle Scholar
  22. Hann BJ, Chengalath R (1981) Redescription of Alonella pulchella Herrick, 1884 (Cladocera, Chydoridae), and a description of the male. Crustaceana 41:249–262CrossRefGoogle Scholar
  23. Haugh GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Intertropical convergence zone through the holocene. Science 293:1304–1308CrossRefGoogle Scholar
  24. Hodell DA, Brenner M, Curtis JH, Medina-González R, Ildefonso Chan Can E, Albornaz-Pat A, Guilderson TP (2005) Climate change on the Yucatán Peninsula during the little ice age. Quat Res 63:109–121CrossRefGoogle Scholar
  25. Jáuregui E (1997) Climate changes in Mexico during the historical and instrumented periods. Quat Int 43–44:7–17CrossRefGoogle Scholar
  26. Jones PD, Mann ME (2004) Climate over past millenia. Rev Geophys 42: RG2002Google Scholar
  27. Kienel U, Bowen SW, Byrne R, Park J, Bohnel H, Dulski P, Luhr JF, Siebert L, Haug GH, Negendank JFW (2009) First lacustrine varve chronologies from Mexico: impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago. J Paleolimnol 42:587–609CrossRefGoogle Scholar
  28. Koinig KA, Schmidt R, Sommaruga-Wögrth S, Tessadri R, Psenner R (1998) Climate change as the primary cause for ph shifts in a high alpine lake. Water Air Soil Pollut 104:167–180CrossRefGoogle Scholar
  29. Koining KA, Kamenik C, Schmidt R, Agusti-Panareda A, Appleby P, Lami A, Prazakova M, Rose N, Schnell ØA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries -the influence of air temperature on biological parameters. J Paleolimnol 28:147–160CrossRefGoogle Scholar
  30. Krammer K, Lange-Bertalot H (1986–1991) Süswasser flora von Mitteleuropa. 2 (Teil 1–4). Stuttgart-Jena: VEB Gustav Fischer, GermanyGoogle Scholar
  31. Krishnaswami S, Lal D, Martin J, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414CrossRefGoogle Scholar
  32. Lachniet MS, Bernal JP, Asmerom Y, Polyak V, Piperno D (2012) A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology 40:259–262CrossRefGoogle Scholar
  33. Lean J, Rind D (1999) Evaluating sun-climate relationships since the Little Ice Age. J Atmos Solar Terrest Phys 61:25–36CrossRefGoogle Scholar
  34. Lean J, Beer J, Bardley R (1995) Reconstruction for solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198CrossRefGoogle Scholar
  35. Lozano-García MS, Caballero M, Ortega B, Rodríguez A, Sosa S (2007) Tracing the effects of the little ice age in the tropical lowlands of Eastern Mesoamerica. Proc Nat Acad Sci 104:16200–16203CrossRefGoogle Scholar
  36. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  37. Marchetto A, Rogora M, Boggero A, Musazzi S, Lami A, Lotter AF, Tolotti M, Thies H, Psenner R, Massaferro J, Barbieri A (2009) Response of alpine lakes to major environmental gradients, as detected through planktonic, benthic and sedimentary assemblages. Adv Limnol 62:419–440Google Scholar
  38. Matthews JA, Briffa KR (2005) The “Little Ice Age”, reevaluation of an evolving concept. Geogr Ann 87 A: 17–36Google Scholar
  39. Metcalfe S, Davies S (2007) Deciphering recent climate change in central Mexican lake records. Clim Change 83:169–186CrossRefGoogle Scholar
  40. Metcalfe SE, Jones MD, Davies SJ, Noren A, Mackenzie A (2010) Cimate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, México. Holocene 20:1195–1206CrossRefGoogle Scholar
  41. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpsom GL, Solymos P, Stevens H, Wagner H (2012) Vegan: Community Ecology Package. p. R packageGoogle Scholar
  42. Quezada N (1995) Congregaciones de indios y grupos étnicos: el caso del Valle de Toluca y zonas aledañas. Rev Complut Hist Am 21:141–166Google Scholar
  43. Reimer PJ, Baillie MG, Bard E, Bayliss A, Beck JW, Bertrand CJ, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guiderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCa104 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  44. Reynolds CS (1998) What factors influence the species composition of phytoplankton in lakes of different trophic status. Hydrobiologia 369–370:11–26CrossRefGoogle Scholar
  45. Sánchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200CrossRefGoogle Scholar
  46. Sarmaja-Korjonen K (2004) Chydorid ephippia as indicators of past environmental changes—a new method. Hydrobiologia 526:129–136CrossRefGoogle Scholar
  47. Shindell DT, Schmidt GA, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Climate 16:4094–4107CrossRefGoogle Scholar
  48. Sinev AY, Zawisza E (2013) Comments on cladocerans of crater lakes of the Nevado de Toluca Volcano (Central Mexico), with the description of a new species. Alona manueli sp. n. Zootaxa 3647:390–400CrossRefGoogle Scholar
  49. Sommaruga-Wögrath S, Koinig KA, Schmidt R, Sommaruga R, Tessadri R, Psenner R (1997) Temperature effects on the acidity of remote alpine lakes. Nature 387:64–67CrossRefGoogle Scholar
  50. Sosa-Nájera S, Lozano-García S, Roy PD, Caballero M (2010) Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago de Santa María del Oro. Bol Soc Geol Mex 62:437–451Google Scholar
  51. Stahle DW, Villanueva-Díaz J, Burnette DJ, Cerano-Paredes J, Heim RR, Fye FK, Acuna-Soto R, Therrell MD, Cleaveland MK, Stahle DK (2011) Major Mesoamerican droughts of the past millennium. Geophys Res Lett 38:1–4. doi: 10.1029/2010GLO46472 CrossRefGoogle Scholar
  52. Stockmarr J (1972) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  53. Stuiver M, Reimer PJ, Reimer RW (2005) Radiocarbon Calibration Program CALIB Rev 5.0.1Google Scholar
  54. Swan SL (1981) Mexico in the Little Ice Age. J Interdiscip Hist 11:633–648Google Scholar
  55. Team RDC (2009) R language and environment for statistical computing. Austria, ViennaGoogle Scholar
  56. Therrel MD, Stable WD, Acuña-Soto R (2004) Aztec drought and the “curse of one rabbit”. Bull Am Meteor Soc 85:1263–1272CrossRefGoogle Scholar
  57. Vázquez-Selem L (2011) Las glaciaciones en las montañas del centro de México. In: Caballero M, Ortega B (eds) Escenarios de cambio climático: Registros del Cuaternario en América Latina I. Universidad Nacional Autónoma de México, México, pp 215–238Google Scholar
  58. Vázquez-Selem L, Heine K (2004) Late Quaternary glaciation of Mexico. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations-extent and chronology, part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp 233–242CrossRefGoogle Scholar
  59. Villers L, López J (1995) Evalución del uso agrícola y forestal del suelo en la cuenca del río Temascaltepec, Nevado de Toluca, México. Investig Geog Boll 31:69–92Google Scholar
  60. Wolfe AP, Härtling JW (1996) The late Quaternary development of three ancient tarns on southwestern Cumberland Peninsula, Baffin Island, Artic Canada: paleolimnological evidence from diatoms and sediment chemistry. J Paleolimnol 15:1–18Google Scholar
  61. Zawisza E, Caballero M, Ruiz-Fernandez C (2012) 500 years of ecological changes recorded in subfossil cladocera in a high-altitude, tropical lake Lago de la Luna, Central Mexico. Stud Quat 29:23–29Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • E. Cuna
    • 1
  • E. Zawisza
    • 1
    • 5
  • M. Caballero
    • 1
  • A. C. Ruiz-Fernández
    • 2
  • S. Lozano-García
    • 3
  • J. Alcocer
    • 4
  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Mazatlán Academic Unit, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMexico
  3. 3.Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  4. 4.Proyecto de Investigación en Limnología Tropical, FES IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico
  5. 5.Research Centre in Warsaw, Institute of Geological SciencesPolish Academy of SciencesWarsawPoland

Personalised recommendations