Advertisement

Journal of Paleolimnology

, Volume 51, Issue 2, pp 241–251 | Cite as

A 16-ka δ18O record of lacustrine sugar biomarkers from the High Himalaya reflects Indian Summer Monsoon variability

  • Michael Zech
  • Mario Tuthorn
  • Roland Zech
  • Frank Schlütz
  • Wolfgang Zech
  • Bruno Glaser
Original Paper

Abstract

We investigated a late glacial–Holocene lacustrine sediment archive located at 4,050 m a.s.l. in the small carbonate-free catchment of Lake Panch Pokhari, Helambu Himal, Nepal. A δ18O sugar biomarker record was established by applying novel compound-specific δ18O analysis of plant sugar biomarkers (Zech and Glaser in Rapid Commun Mass Spectrom 23:3522–3532, 2009). This method overcomes analytical challenges such as extraction and purification faced by previous methods aimed at using δ18O of aquatic cellulose as a paleoclimate proxy. The δ18O results for sugar biomarkers arabinose, xylose and fucose agree well and reveal a pronounced trend towards lower δ18O values during the deglaciation and the onset of the Bølling/Allerød interstadial. By contrast, the period of the Younger Dryas is characterized by higher δ18O values. The early Holocene again reveals lower δ18O values. We suggest that our lacustrine δ18O record reflects coupled hydrological and thermal control. It is strongly related to changes in the oxygen isotopic composition of paleo-precipitation and resembles the δ18O records of Asian speleothems. With respect to the ‘amount effect,’ the record is interpreted as reflecting the Indian Summer Monsoon intensity. The precipitation signal is, however, amplified in our record by evaporative 18O enrichment that is controlled by the ratio of precipitation to evaporation. We suggest that our δ18O record reflects the variability of the Indian Summer Monsoon, which was strong during the Bølling/Allerød interstadial and early Holocene, but weak during the Younger Dryas stadial. This interpretation is corroborated by a pollen-based index for Lake Panch Pokhari that estimated the strength of the Indian Summer Monsoon versus the strength of the Westerlies. Millennial-scale synchronicity with the Greenland δ18O temperature records highlights the previously suggested strong teleconnections between the Asian Monsoon system and North Atlantic climate variability.

Keywords

High Himalaya Late glacial Indian Summer Monsoon Stable oxygen isotopes Sugar biomarkers 

Notes

Acknowledgments

We thank B. Huwe, K. Kharki, S. Markovic and L. Zöller for logistic support and discussions and A. Mergner and S. Bösel for laboratory assistance. We thank three anonymous reviewers and C. Gallant for constructive reviews and valuable comments on our manuscript. We also highly appreciate the great editorial help and the proof-reading of Editor in Chief M.Brenner and Guest Editor S.Mischke. This work was partly funded by the German Research Foundation (DFG ZE 844/1-2) and the Volkswagen Foundation. M. Zech also greatly acknowledges the support given by the Alexander von Humboldt-Foundation.

References

  1. Aichner B, Herzschuh U, Wilkes H, Vieth A, Böhner J (2010) δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes—a surface sediment study and application to a 16 ka record from Lake Koucha. Org Geochem 41:779–790CrossRefGoogle Scholar
  2. Amelung W, Cheshire MV, Guggenberger G (1996) Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biol Biochem 28:1631–1639CrossRefGoogle Scholar
  3. An Z, Clemens SC, Shen J, Qiang X, Jin Z, Sun Y, Prell WL, Luo J, Wang S, Xu H, Cai Y, Zhou W, Liu X, Liu W, Shi Z, Yan L, Xiao X, Chang H, Wu F, Ai L, Lu F (2011) Glacial-interglacial Indian summer monsoon dynamics. Science 333:719–723CrossRefGoogle Scholar
  4. Annotated checklist of the flowering plants of Nepal. http://www.efloras.org/flora_page.aspx?flora_id=110
  5. Araguas-Araguas L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355CrossRefGoogle Scholar
  6. Barker PA, Hurell ER, Leng MJ, Wolff C, Cocquyt C, Sloane HJ, Verschuren D (2011) Seasonality in equatorial climate over the past 25 k.y. revealed by oxygen isotope records from Mount Kilimanjaro. Geology 39:1111–1114CrossRefGoogle Scholar
  7. Berger AL, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  8. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  9. Beug H-J, Miehe G (1999) Vegetation history and human impact in the eastern Central Himalaya (Langtang and Helambu, Nepal). Dis Bot 318:1–98Google Scholar
  10. Biersmith A, Benner R (1998) Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem 63:131–144CrossRefGoogle Scholar
  11. Breitenbach S, Adkins J, Meyer H, Marwan N, Kumar K, Haug G (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220CrossRefGoogle Scholar
  12. Dansgaard P (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  13. Danzeglocke U, Jöris O, Weninger B (2012) CalPal-2007online. Available at http://www.calpal.online/ (last access: October 2012)
  14. DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45:1885–1894CrossRefGoogle Scholar
  15. Dykoski CA, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86CrossRefGoogle Scholar
  16. Erdtman G (1960) The acetolysis method. Svensk Botanisk Tidskrift 54:561–564Google Scholar
  17. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739CrossRefGoogle Scholar
  18. Fukui K, Jujii Y, Ageta Y, Asachi K (2007) Changes in lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal Himalayas. Glob Planet Change 55:251–256CrossRefGoogle Scholar
  19. Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331CrossRefGoogle Scholar
  20. Henderson A, Holmes J, Leng M (2010) Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: effective moisture variability and atmospheric circulation changes. Quat Sci Rev 29:2215–2223CrossRefGoogle Scholar
  21. Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178CrossRefGoogle Scholar
  22. Hicks RE, Owen CJ, Aas P (1994) Deposition, resuspension, and decomposition of particulate organic matter in the sediments of Lake Itasca, Minnesota, USA. Hydrobiologia 284:79–91CrossRefGoogle Scholar
  23. Jia G, Dungait JAJ, Bingham EM, Valiranta M, Korhola A, Evershed RP (2008) Neutral monosaccharides as biomarker proxies for bog-forming plants for application to palaeovegetation reconstruction in ombrotrophic peat deposits. Org Geochem 39:1790–1799CrossRefGoogle Scholar
  24. Kitagawa H, Tareq SM, Matsuzaki H, Inoue N, Tanoue E, Yasuda Y (2007) Radiocarbon concentration of lake sediment cellulose from Lake Erhai in southwest China. Nucl Instrum Methods B 259:526–529CrossRefGoogle Scholar
  25. Knapp DR (1979) Handbook of analytical derivatisation reaction. John Wiley & Sons, New YorkGoogle Scholar
  26. Krstic S, Zech W, Obreht I, Svircev Z, Markovic SB (2012) Late Quaternary environmental changes in Helambu Himal, Central Nepal, recorded in the diatom flora assemblage composition and geochemistry of Lake Panch Pokhari. J Paleolimnol 47:113–124CrossRefGoogle Scholar
  27. Leuschner DC, Sirocko F (2003) Orbital insolation forcing of the Indian Monsoon—a motor for global climate changes? Palaeogeogr Palaeoclimatol Palaeoecol 197:83–95CrossRefGoogle Scholar
  28. Levi C, Labeyrie L, Bassinot F, Guichard F, Cortijo E, Waelbroeck C, Caillon N, Duprat J, Garidel-Thoron T, Elderfield H (2007) Low-latitude hydrological cycle and rapid climate changes during the last deglaciation. Geochem Geophys Geosys 8(Q05N12). doi: 10.1029/2006GC001514
  29. Lister GS, Kelts K, Zao CK, Yu J-Q, Niessen F (1991) Lake Qinghai, China: closed-basin lake levels and oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 84:141–182CrossRefGoogle Scholar
  30. Liu X, Shen J, Wang S, Wang Y, Liu W (2007) Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial. Chin Sci Bull 52:539–544CrossRefGoogle Scholar
  31. Meyers P, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  32. Mischke S, Aichner B, Diekmann B, Herzschuh U, Plessen B, Wünnemann B, Zhang C (2010) Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chem Geol 276:95–103CrossRefGoogle Scholar
  33. Moore PD, Webb JA, Collinson ME (1999) Pollen analysis. Blackwell, OxfordGoogle Scholar
  34. NGRIP members (2005) Greenland ice core chronology 2005 (GICC05) and 20 year mean of δ18O data from NGRIP and GRIP. Available online at http://www.gfy.ku.dk/~www-glac/ngrip/index_eng.htm
  35. Ogier S, Disnar J-R, Albéric P, Bourdier G (2001) Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic lake (Aydat, France). Org Geochem 32:151–162CrossRefGoogle Scholar
  36. Overpeck J, Anderson D, Trumbore S, Prell WL (1996) The southwest Indian monsoon over the last 18,000 years. Clim Dyn 12:213–225CrossRefGoogle Scholar
  37. Owen L (2009) Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quat Sci Rev 28:2150–2164CrossRefGoogle Scholar
  38. Pizer R, Tihal C (1992) Equilibria and reaction mechanism of the complexation of methylboronic acid with polyols. Inorg Chem 31:3243–3247CrossRefGoogle Scholar
  39. Polunin O, Stainton A (1999) Flowers of the Himalaya. University Press, OxfordGoogle Scholar
  40. Saurer M, Siegwolf R (2004) Pyrolysis techniques for oxygen isotope analysis of cellulose. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, New York, pp 497–508Google Scholar
  41. Schlütz F, Zech W (2004) Palynological investigations on vegetation and climate change in the late Quaternary of Lake Rukche area, Gorkha Himal, Central Nepal. Veg Hist Archaeobot 13:81–90CrossRefGoogle Scholar
  42. Schmidt H-L, Werner R, Roßmann A (2001) 18O Pattern and biosynthesis in natural plant products. Phytochemistry 58:9–32CrossRefGoogle Scholar
  43. Schrag D, Adkins J, McIntyre K, Alexander J, Hodell D, Charles C, McManus J (2002) The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat Sci Rev 21:331–342CrossRefGoogle Scholar
  44. Shakun J, Burns S, Fleitmann D, Kramers J, Matter A (2007) A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet Sci Lett 259:442–456CrossRefGoogle Scholar
  45. Sinha A, Cannariato KG, Stott LD, Li H-C, You C-F, Cheng H, Edwards RL, Singh IB (2005) Variability of Southwest Indian summer monsoon precipitation during the Bølling–Allerød. Geology 33:813–816CrossRefGoogle Scholar
  46. Sirocko F, Garbe-Schönberg D, McIntyre A, Molfino B (1996) Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272:526–529CrossRefGoogle Scholar
  47. Sternberg L, DeNiro MJ (1983) Bio-geochemical implications of the isotopic equilibrium fractionation factor between oxygen atoms of acetone and water. Geochim Cosmochim Acta 47:2271–2274CrossRefGoogle Scholar
  48. Sternberg L, Ellsworth PFV (2011) Divergent biochemical fractionation, not convergent temperature, explains cellulose oxygen isotope enrichment across latitudes. PLoS ONE 6:e28040. doi: 10.1371/journal.pone.0028040 CrossRefGoogle Scholar
  49. Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, Lin PN, Beer J, Synal HA, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825CrossRefGoogle Scholar
  50. Thompson LG, Davis ME, Mosley-Thompson E, Lin P-N, Henderson KA, Mashiotta TA (2005) Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales. J Quat Sci 20:723–733CrossRefGoogle Scholar
  51. Tian L, Yao T, Schuster P, White J, Ichiayanagi K, Pendall E, Pu J, Yu W (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res 108(D9):4293. doi: 10.1029/2002JD002173 Google Scholar
  52. Wang Y, Cheng H, Edwards RL, An ZS, Wu JY, Shen C–C, Dorale JA (2001) A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348CrossRefGoogle Scholar
  53. Wissel H, Mayr C, Lücke A (2008) A new approach for the isolation of cellulose from aquatic plant tissue and freshwater sediments for stable isotope analysis. Org Geochem 39:1545–1561CrossRefGoogle Scholar
  54. Wolfe BB, Falcone M, Clogg-Wright K, Mongeon C, Yi Y, Brock B, Amour N, Mark W, Edwards TWD (2007) Progress in isotope paleohydrology using lake sediment cellulose. J Paleolimnol 37:221–231CrossRefGoogle Scholar
  55. Wu W, Liu T (2004) Possible role of the “Holocene Event 3” on the collapse of Neolithic cultures around the central plain of China. Quat Int 117:153–166CrossRefGoogle Scholar
  56. Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An ZS, Cai Y (2004) Timing, duration, and transition of the Last Interglacial Asian Monsoon. Science 304:575–578CrossRefGoogle Scholar
  57. Zech M, Glaser B (2009) Compound-specific δ18O analyses of neutral sugars in soils using GC–Py–IRMS: problems, possible solutions and a first application. Rapid Commun Mass Spectrom 23:3522–3532CrossRefGoogle Scholar
  58. Zech M, Werner R, Juchelka D, Kalbitz K, Buggle B, Glaser B (2012) Absence of oxygen isotope fractionation/exchange of (hemi-) cellulose derived sugars during litter decomposition. Org Geochem 42:1470–1475CrossRefGoogle Scholar
  59. Zhang J, Chen F, Holmes JA, Li H, Guo X, Wang J, Li S, Lü Y, Zhao Y, Qiang M (2011) Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quat Sci Rev 30:1973–1987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Michael Zech
    • 1
    • 2
  • Mario Tuthorn
    • 1
  • Roland Zech
    • 3
  • Frank Schlütz
    • 4
    • 5
  • Wolfgang Zech
    • 1
  • Bruno Glaser
    • 2
  1. 1.Department of Soil Physics, Soil Science and Soil Geography, GeomorphologyUniversity of BayreuthBayreuthGermany
  2. 2.Department of Terrestrial BiogeochemistryMartin Luther University of Halle-WittenbergHalleGermany
  3. 3.Geological InstituteETH ZurichZurichSwitzerland
  4. 4.Lower Saxony Institute for Historical Coastal ResearchWilhelmshavenGermany
  5. 5.Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant SciencesUniversity of GöttingenGöttingenGermany

Personalised recommendations