Journal of Paleolimnology

, Volume 50, Issue 4, pp 583–592 | Cite as

Inferring organic content of sediments by scanning reflectance spectroscopy (380–730 nm): applying a novel methodology in a case study from proglacial lakes in Norway

  • Mathias Trachsel
  • Bjørn Christian Kvisvik
  • Pål Ringkjøb Nielsen
  • Jostein Bakke
  • Atle Nesje


Reflectance spectroscopy in the visible spectrum (VIS-RS) is a method that has been successfully applied for inferring organic content of sediments. In this study, we test the applicability of VIS-RS to lake sediments in Norway. On the one hand we use conventional, established algorithms for inferring organic content of sediments, on the other hand we test the potential of multivariate calibration techniques to infer organic content. For absolute quantification of organic content, conventional Corg measurements are needed when using conventional algorithms as well as when employing multivariate calibration techniques. Both, conventional algorithms and multivariate calibrations, result in estimates of organic content closely mirroring loss-on-ignition measurements. When using multivariate calibration techniques, a conventional Corg measurement every 5 cm is sufficient to obtain estimates of organic matter that are more accurate than those obtained by means of conventional algorithms. Therefore, the potential of multivariate calibration techniques and VIS-RS to substitute measurements of more time consuming and costly sediment parameters (e.g. clay minerals) should be tested.


Reflectance spectroscopy Multivariate calibration LOI Organic carbon 



We would like to thank Richard J. Telford and H. John B. Birks for discussions on multivariate calibration techniques. We thank two anonymous reviewers and Oliver Heiri for comments that greatly improved the clarity of this manuscript. Funding was provided by the Swiss National Science Foundation through a personal grant to MT and the Bjerknes Centre for Climate Research. This is publication no. A430 from the Bjerknes Centre for Climate Research.


  1. Bakke J, Trachsel M, Kvisvik BC, Nesje A, Lyså A (2013) Numerical analysis of a multi-proxy data set from a distal glacier-fed lake, Sørsendalsvatnet, western Norway. Quat Sci Rev 73:182–195CrossRefGoogle Scholar
  2. Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  3. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  4. Breiman L, Friedman JH, Olshen RH, Stone CG (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  5. Bryhni I, Nøttvedt A, Ramberg IB (2007) Landet blir til: Norges geologi. Trondheim, Norsk geologisk foreningGoogle Scholar
  6. Canty A, Ripley B (2011) Boot: bootstrap functions, version 1.3-5.
  7. Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium line altitudes and pine-tree limits: a case study from Hardangerjøkulen. Holocene 6:381–398CrossRefGoogle Scholar
  8. de Jong S (1993) PLS fits closer than PCR. J Chemom 7:551–557CrossRefGoogle Scholar
  9. De Vos B, Vandecasteele B, Deckers J, Muys B (2005) Capability of loss—as a predictor of total organic carbon in non‐forest soils. Soil Sci Plant Anal 36:2899–2921Google Scholar
  10. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  11. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data. Ecology 81:3178–3192CrossRefGoogle Scholar
  12. Debret M, Sebag D, Desmet M, Balsam W, Copard Y, Mourier B, Susperrigui AS, Arnaud F, Bentaleb I, Chapron E, Lallier-Verges E, Winiarski T (2011) Spectrocolorimetric interpretation of sedimentary dynamics: the new “Q7/4 diagram”. Earth Sci Rev 109:1–19CrossRefGoogle Scholar
  13. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  14. Janbu AD, Paasche Ø, Talbot MR (2011) Paleoclimate changes inferred from stable isotopes and magnetic properties of organic-rich lake sediments in Arctic Norway. J Paleolimnol 46:29–44CrossRefGoogle Scholar
  15. Legendre P (2013) lmodel2: model II regression, version 1.7-1.
  16. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  17. Liaw A, Wiener M (2011) randomForest: Breiman and Cutler’s random forests for classification and regression, version 4.6-5.
  18. Martens H, Naes T (1989) Multivariate Calibration. Wiley, ChichesterGoogle Scholar
  19. Michelutti N, Blais JM, Cumming BF, Paterson AM, Ruhland K, Wolfe AP, Smol JP (2010) Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J Paleolimnol 43:205–217CrossRefGoogle Scholar
  20. Nesje A (1992) A piston corer for lacustrine and marine sediments. Arct Antarct Alp Res 24:257–259Google Scholar
  21. Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records. Holocene 11:267–280CrossRefGoogle Scholar
  22. Nesje A, Dahl SO, Lie Ø (2004) Holocene millennial-scale summer temperature variability inferred from sediment parameters in a non-glacial mountain lake: Danntjørn, Jotunheimen, central southern Norway. Quat Sci Rev 223:2183–2205CrossRefGoogle Scholar
  23. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  24. Rein B (2003) In-situ Reflektionsspektroskopie und digitale Bildanalyse—Gewinnung hochauflösender Paläoumweltdaten mit fernerkundlichen Methoden. Universität Mainz, HabilitationsschriftGoogle Scholar
  25. Rein B, Sirocko F (2002) In situ reflectance spectroscopy–analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954CrossRefGoogle Scholar
  26. Rein B, Lueckge A, Reinhardt L, Sirocko F, Wolf A, Dullo W (2005) El Nino variability off Peru during the last 20,000 years. Paleoceanography 20(4):PA 4003Google Scholar
  27. Rosen P, Vogel H, Cunningham L, Reuss N, Conley DJ, Persson P (2010) Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. J Paleolimnol 43:247–259CrossRefGoogle Scholar
  28. Trachsel M, Grosjean M, Schnyder D, Kamenik C, Rein B (2010) Scanning reflectance spectroscopy (380–730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J Paleolimnol 44:979–994CrossRefGoogle Scholar
  29. USGS (2010) Digital Spectral Library, splib06a.
  30. van den Wollenberg AL (1977) Redundancy analysis: an alternative for canonical correlation analysis. Psychometrika 42:207–219Google Scholar
  31. Vogel H, Rosén P, Wagner B, Melles M, Persson P (2008) Fourier transform infrared spectroscopy, a new cost-effective tool for quantitative analysis of biogeochemical properties in long sediment records. J Paleolimnol 40:689–702CrossRefGoogle Scholar
  32. von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 19:873–881CrossRefGoogle Scholar
  33. Wehrens R, Mevik B-H (2007) PLS: partial least squares regression (PLSR) and principal component regression (PCR), version 2.1-0.
  34. Wolfe AP, Vinebrooke R, Michelutti N, Rivard B, Das B (2006) Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36:91–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mathias Trachsel
    • 1
    • 2
    • 4
  • Bjørn Christian Kvisvik
    • 2
    • 3
  • Pål Ringkjøb Nielsen
    • 3
  • Jostein Bakke
    • 1
    • 2
  • Atle Nesje
    • 1
    • 2
  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway
  2. 2.Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  3. 3.Department of GeographyUniversity of BergenBergenNorway
  4. 4.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations